
5
F I F T H

E D I T I O N

Mark E. Russinovich
and David A. Solomon

with Alex Ionescu

Windows®

Internals
Covering Windows Server® 2008
and Windows Vista®

Foreword by Ben Fathi
Corporate Vice President, Windows Core Development, Microsoft Corporation

 v

Table of Contents

Foreword .xix

Acknowledgments .xxi

Introduction .xxiii

 1 Concepts and Tools. 1

Windows Operating System Versions . 1

Foundation Concepts and Terms. 2

Windows API. 2

Services, Functions, and Routines . 4

Processes, Threads, and Jobs . 5

Virtual Memory . 14

Kernel Mode vs. User Mode. 16

Terminal Services and Multiple Sessions . 19

Objects and Handles . 21

Security . 22

Registry . 23

Unicode . 23

Digging into Windows Internals . 24

Reliability and Performance Monitor . 25

Kernel Debugging . 26

Windows Software Development Kit . 31

Windows Driver Kit . 31

Sysinternals Tools . 32

Conclusion . 32

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

vi Table of Contents

 2 System Architecture . 33

Requirements and Design Goals . 33

Operating System Model . 34

Architecture Overview. 35

Portability . 38

Symmetric Multiprocessing . 39

Scalability . 43

Differences Between Client and Server Versions . 43

Checked Build. 47

Key System Components . 49

Environment Subsystems and Subsystem DLLs . 50

Ntdll.dll . 57

Executive . 58

Kernel . 61

Hardware Abstraction Layer. 65

Device Drivers. 68

System Processes . 74

Conclusion . 83

 3 System Mechanisms . 85

Trap Dispatching. 85

Interrupt Dispatching . 87

Exception Dispatching. 114

System Service Dispatching . 125

Object Manager . 133

Executive Objects. 136

Object Structure. 138

Synchronization . 170

High-IRQL Synchronization . 172

Low-IRQL Synchronization . 177

System Worker Threads. 198

Windows Global Flags . 200

Advanced Local Procedure Calls (ALPCs) . 202

Kernel Event Tracing . 207

Wow64 . 211

Wow64 Process Address Space Layout . 211

System Calls . 212

Exception Dispatching. 212

 Table of Contents vii

User Callbacks. 212

File System Redirection. 212

Registry Redirection and Reflection . 213

I/O Control Requests . 214

16-Bit Installer Applications . 215

Printing . 215

Restrictions . 215

User-Mode Debugging . 216

Kernel Support . 216

Native Support . 217

Windows Subsystem Support . 219

Image Loader . 220

Early Process Initialization . 222

Loaded Module Database . 223

Import Parsing . 226

Post Import Process Initialization . 227

Hypervisor (Hyper-V) . 228

Partitions . 230

Root Partition . 230

Child Partitions . 232

Hardware Emulation and Support . 234

Kernel Transaction Manager . 240

Hotpatch Support . 242

Kernel Patch Protection. 244

Code Integrity. 246

Conclusion . 248

 4 Management Mechanisms . 249

The Registry . 249

Viewing and Changing the Registry . 249

Registry Usage . 250

Registry Data Types . 251

Registry Logical Structure. 252

Transactional Registry (TxR) . 260

Monitoring Registry Activity . 262

Registry Internals . 266

Services . 281

Service Applications . 282

The Service Control Manager . 300

viii Table of Contents

Service Startup . 303

Startup Errors . 307

Accepting the Boot and Last Known Good . 308

Service Failures . 310

Service Shutdown . 311

Shared Service Processes . 313

Service Tags. 316

Service Control Programs. 317

Windows Management Instrumentation . 318

Providers . 319

The Common Information Model and the Managed Object
Format Language. 320

Class Association . 325

WMI Implementation . 327

WMI Security . 329

Windows Diagnostic Infrastructure. 329

WDI Instrumentation. 330

Diagnostic Policy Service . 330

Diagnostic Functionality . 332

Conclusion . 333

 5 Processes, Threads, and Jobs. 335

Process Internals. 335

Data Structures. 335

Kernel Variables . 342

Performance Counters . 343

Relevant Functions. .344

Protected Processes . 346

Flow of CreateProcess . 348

Stage 1: Converting and Validating Parameters and Flags. 350

Stage 2: Opening the Image to Be Executed . 351

Stage 3: Creating the Windows Executive Process Object
(PspAllocateProcess). 354

Stage 4: Creating the Initial Thread and Its Stack and Context 359

Stage 5: Performing Windows Subsystem–Specific
Post-Initialization . 360

Stage 6: Starting Execution of the Initial Thread 362

Stage 7: Performing Process Initialization in the Context of the
New Process . 363

 Table of Contents ix

Thread Internals . 370

Data Structures. 370

Kernel Variables . 379

Performance Counters . 379

Relevant Functions. 380

Birth of a Thread . 380

Examining Thread Activity . 381

Limitations on Protected Process Threads. 384

Worker Factories (Thread Pools) . 386

Thread Scheduling . 391

Overview of Windows Scheduling . 391

Priority Levels . 393

Windows Scheduling APIs . 395

Relevant Tools. 396

Real-Time Priorities . 399

Thread States .400

Dispatcher Database .404

Quantum . 406

Scheduling Scenarios. 413

Context Switching . 418

Idle Thread . 418

Priority Boosts . 419

Multiprocessor Systems . 434

Multiprocessor Thread-Scheduling Algorithms . 442

CPU Rate Limits .444

Job Objects . 445

Conclusion . 450

 6 Security. 451

Security Ratings . 451

Trusted Computer System Evaluation Criteria. 451

The Common Criteria . 453

Security System Components . 454

Protecting Objects . 458

Access Checks . 459

Security Descriptors and Access Control . 484

Account Rights and Privileges . 501

Account Rights . 502

x Table of Contents

Privileges . 503

Super Privileges . 509

Security Auditing . 511

Logon . 513

Winlogon Initialization . 515

User Logon Steps . 516

User Account Control . 520

Virtualization . 521

Elevation . 528

Software Restriction Policies . 533

Conclusion . 535

 7 I/O System . 537

I/O System Components . 537

The I/O Manager . 539

Typical I/O Processing . 540

Device Drivers . 541

Types of Device Drivers. 541

Structure of a Driver . 547

Driver Objects and Device Objects . 550

Opening Devices . 555

I/O Processing. 562

Types of I/O. 563

I/O Request to a Single-Layered Driver . 572

I/O Requests to Layered Drivers . 578

I/O Cancellation . 587

I/O Completion Ports . 592

I/O Prioritization. 598

Driver Verifier . 604

Kernel-Mode Driver Framework (KMDF) . 606

Structure and Operation of a KMDF Driver. 607

KMDF Data Model . 608

KMDF I/O Model . 612

User-Mode Driver Framework (UMDF) . 616

The Plug and Play (PnP) Manager . 619

Level of Plug and Play Support . 620

Driver Support for Plug and Play . 621

 Table of Contents xi

Driver Loading, Initialization, and Installation . 623

Driver Installation. 632

The Power Manager. 636

Power Manager Operation. 638

Driver Power Operation . 639

Driver and Application Control of Device Power 643

Conclusion .644

 8 Storage Management. 645

Storage Terminology . 645

Disk Drivers .646

Winload .646

Disk Class, Port, and Miniport Drivers . 647

Disk Device Objects . 650

Partition Manager . 651

Volume Management . 652

Basic Disks . 653

Dynamic Disks . 656

Multipartition Volume Management . 661

The Volume Namespace. 667

Volume I/O Operations. 674

Virtual Disk Service . 675

BitLocker Drive Encryption . 677

BitLocker Architecture. 677

Encryption Keys . 679

Trusted Platform Module (TPM) . 681

BitLocker Boot Process . 683

BitLocker Key Recovery . 684

Full Volume Encryption Driver . 686

BitLocker Management. 687

Volume Shadow Copy Service . 688

Shadow Copies . 688

VSS Architecture. 688

VSS Operation . 689

Uses in Windows . 692

Conclusion . 698

xii Table of Contents

 9 Memory Management . 699

Introduction to the Memory Manager. 699

Memory Manager Components . 700

Internal Synchronization. 701

Examining Memory Usage . 701

Services the Memory Manager Provides . 704

Large and Small Pages . 705

Reserving and Committing Pages. 706

Locking Memory . 707

Allocation Granularity . 708

Shared Memory and Mapped Files. 709

Protecting Memory . 711

No Execute Page Protection . 713

Copy-on-Write . 718

Address Windowing Extensions . 719

Kernel-Mode Heaps (System Memory Pools) . 721

Pool Sizes. 722

Monitoring Pool Usage. 724

Look-Aside Lists . 728

Heap Manager . 729

Types of Heaps . 730

Heap Manager Structure . 731

Heap Synchronization . 732

The Low Fragmentation Heap . 732

Heap Security Features . 733

Heap Debugging Features . 734

Pageheap. 735

Virtual Address Space Layouts . 736

x86 Address Space Layouts . 737

x86 System Address Space Layout . 740

x86 Session Space . 740

System Page Table Entries . 744

64-Bit Address Space Layouts . 745

64-Bit Virtual Addressing Limitations. 749

Dynamic System Virtual Address Space Management 751

System Virtual Address Space Quotas . 756

User Address Space Layout . 757

 Table of Contents xiii

Address Translation . 761

x86 Virtual Address Translation . 762

Translation Look-Aside Buffer . 768

Physical Address Extension (PAE) . 769

IA64 Virtual Address Translation . 772

x64 Virtual Address Translation . 773

Page Fault Handling. 774

Invalid PTEs . 775

Prototype PTEs . 776

In-Paging I/O . 778

Collided Page Faults . 779

Clustered Page Faults . 779

Page Files. 780

Stacks . 784

User Stacks . 785

Kernel Stacks. 786

DPC Stack . 787

Virtual Address Descriptors . 787

Process VADs . 788

Rotate VADs . 790

NUMA . 791

Section Objects. 792

Driver Verifier . 799

Page Frame Number Database . 803

Page List Dynamics . 807

Page Priority . 809

Modified Page Writer . 812

PFN Data Structures . 814

Physical Memory Limits. 818

Windows Client Memory Limits . 819

Working Sets . 822

Demand Paging . 823

Logical Prefetcher . 823

Placement Policy . 827

Working Set Management . 828

Balance Set Manager and Swapper . 831

System Working Set. 832

Memory Notification Events . 833

xiv Table of Contents

Proactive Memory Management (SuperFetch) . 836

Components . 836

Tracing and Logging . 838

Scenarios .840

Page Priority and Rebalancing .840

Robust Performance . 843

ReadyBoost .844

ReadyDrive . 845

Conclusion . 847

 10 Cache Manager . 849

Key Features of the Cache Manager . 849

Single, Centralized System Cache . 850

The Memory Manager . 850

Cache Coherency . 850

Virtual Block Caching . 852

Stream-Based Caching . 852

Recoverable File System Support . 853

Cache Virtual Memory Management . 854

Cache Size . 855

Cache Virtual Size . 855

Cache Working Set Size . 856

Cache Physical Size . 858

Cache Data Structures . 859

Systemwide Cache Data Structures. 860

Per-File Cache Data Structures . 862

File System Interfaces . 868

Copying to and from the Cache . 869

Caching with the Mapping and Pinning Interfaces 870

Caching with the Direct Memory Access Interfaces 872

Fast I/O. 873

Read Ahead and Write Behind. 875

Intelligent Read-Ahead . 875

Write-Back Caching and Lazy Writing . 877

Write Throttling . 885

System Threads. 886

Conclusion . 887

 Table of Contents xv

 11 File Systems . 889

Windows File System Formats . 890

CDFS . 890

UDF. 891

FAT12, FAT16, and FAT32 . 891

exFAT . 894

NTFS . 895

File System Driver Architecture . 895

Local FSDs . 896

Remote FSDs. 897

File System Operation . 901

File System Filter Drivers. 907

Troubleshooting File System Problems. 908

Process Monitor Basic vs. Advanced Modes . 908

Process Monitor Troubleshooting Techniques . 909

Common Log File System . 910

NTFS Design Goals and Features . 918

High-End File System Requirements. 918

Advanced Features of NTFS . 920

NTFS File System Driver. 934

NTFS On-Disk Structure . 937

Volumes . 937

Clusters . 937

Master File Table . 938

File Reference Numbers . 942

File Records . 942

File Names. 945

Resident and Nonresident Attributes . 948

Data Compression and Sparse Files . 951

The Change Journal File . 956

Indexing. 960

Object IDs . 961

Quota Tracking. 962

Consolidated Security . 963

Reparse Points . 965

Transaction Support . 965

xvi Table of Contents

NTFS Recovery Support . 974

Design . 975

Metadata Logging . 976

Recovery . 981

NTFS Bad-Cluster Recovery . 985

Self-Healing. 989

Encrypting File System Security . 990

Encrypting a File for the First Time . 993

The Decryption Process . 998

Backing Up Encrypted Files . 999

Conclusion .1000

 12 Networking . 1001

Windows Networking Architecture. 1001

The OSI Reference Model. 1001

Windows Networking Components .1003

Networking APIs. .1006

Windows Sockets .1006

Winsock Kernel (WSK). 1012

Remote Procedure Call . 1014

Web Access APIs. 1018

Named Pipes and Mailslots . 1021

NetBIOS . 1027

Other Networking APIs. 1030

Multiple Redirector Support. 1033

Multiple Provider Router . 1034

Multiple UNC Provider . 1037

Name Resolution . 1039

Domain Name System. 1039

Windows Internet Name Service. 1039

Peer Name Resolution Protocol . 1039

Location and Topology . 1042

Network Location Awareness (NLA) . 1042

Link-Layer Topology Discovery (LLTD) . 1043

Protocol Drivers .1044

Windows Filtering Platform (WFP) . 1047

NDIS Drivers . 1053

Variations on the NDIS Miniport . 1057

Connection-Oriented NDIS . 1057

 335

Chapter 5

Processes, Threads, and Jobs

In this chapter, we’ll explain the data structures and algorithms that deal with processes,

threads, and jobs in the Windows operating system. The first section focuses on the internal

structures that make up a process. The second section outlines the steps involved in creat-

ing a process (and its initial thread). The internals of threads and thread scheduling are then

described. The chapter concludes with a description of the job object.

Where relevant performance counters or kernel variables exist, they are mentioned. Although

this book isn’t a Windows programming book, the pertinent process, thread, and job

Windows functions are listed so that you can pursue additional information on their use.

Because processes and threads touch so many components in Windows, a number of terms

and data structures (such as working sets, objects and handles, system memory heaps, and

so on) are referred to in this chapter but are explained in detail elsewhere in the book. To

fully understand this chapter, you need to be familiar with the terms and concepts explained

in Chapters 1 and 2, such as the difference between a process and a thread, the Windows

virtual address space layout, and the difference between user mode and kernel mode.

Process Internals

This section describes the key Windows process data structures. Also listed are key kernel

variables, performance counters, and functions and tools that relate to processes.

Data Structures

Each Windows process is represented by an executive process (EPROCESS) block. Besides

containing many attributes relating to a process, an EPROCESS block contains and points to a

number of other related data structures. For example, each process has one or more threads

represented by executive thread (ETHREAD) blocks. (Thread data structures are explained in

the section “Thread Internals” later in this chapter.) The EPROCESS block and its related data

structures exist in system address space, with the exception of the process environment block

(PEB), which exists in the process address space (because it contains information that needs

to be accessed by user-mode code).

In addition to the EPROCESS block and the PEB, the Windows subsystem process (Csrss)

maintains a parallel structure for each process that is executing a Windows program. Finally,

336 Windows Internals, Fifth Edition

the kernel-mode part of the Windows subsystem (Win32k.sys) will also maintain a per-pro-

cess data structure that is created the first time a thread calls a Windows USER or GDI func-

tion that is implemented in kernel mode.

Figure 5-1 is a simplified diagram of the process and thread data structures. Each data struc-

ture shown in the figure is described in detail in this chapter.

Thread
environment

block

Process
environment

block

Process
block

Windows process block

Handle table

Thread
block

System address space

Process address space

FIGURE 5-1 Data structures associated with processes and threads

First let’s focus on the process block. (We’ll get to the thread block in the section “Thread

Internals” later in the chapter.) Figure 5-2 shows the key fields in an EPROCESS block.

 Chapter 5 Processes, Threads, and Jobs 337

Kernel process block (or PCB)

Process ID

Parent process ID

Exit status

Create and exit times

Active process link

Primary access token

EPROCESS

Handle table

Quota block

Memory management information

Exception port

Debugger port

Device map

Process environment block

Image filename

Image base address

Process priority class

Job object

Windows process block

FIGURE 5-2 Structure of an executive process block

EXPERIMENT: Displaying the Format of an EPROCESS Block

For a list of the fields that make up an EPROCESS block and their offsets in hexadecimal,

type dt _eprocess in the kernel debugger. (See Chapter 1 for more information on the

kernel debugger and how to perform kernel debugging on the local system.) The out-

put (truncated for the sake of space) on a 32-bit system looks like this:

lkd> dt _eprocess

nt!_EPROCESS

 +0x000 Pcb : _KPROCESS

 +0x080 ProcessLock : _EX_PUSH_LOCK

 +0x088 CreateTime : _LARGE_INTEGER

 +0x090 ExitTime : _LARGE_INTEGER

 +0x098 RundownProtect : _EX_RUNDOWN_REF

 +0x09c UniqueProcessId : Ptr32 Void

 +0x0a0 ActiveProcessLinks : _LIST_ENTRY

 +0x0a8 QuotaUsage : [3] Uint4B

 +0x0b4 QuotaPeak : [3] Uint4B

 +0x0c0 CommitCharge : Uint4B

 +0x0c4 PeakVirtualSize : Uint4B

 +0x0c8 VirtualSize : Uint4B

 +0x0cc SessionProcessLinks : _LIST_ENTRY

 +0x0d4 DebugPort : Ptr32 Void

 +0x0d8 ExceptionPortData : Ptr32 Void

338 Windows Internals, Fifth Edition

 +0x0d8 ExceptionPortValue : Uint4B

 +0x0d8 ExceptionPortState : Pos 0, 3 Bits

 +0x0dc ObjectTable : Ptr32 _HANDLE_TABLE

 +0x0e0 Token : _EX_FAST_REF

 +0x0e4 WorkingSetPage : Uint4B

 +0x0e8 AddressCreationLock : _EX_PUSH_LOCK

 +0x0ec RotateInProgress : Ptr32 _ETHREAD

 +0x0f0 ForkInProgress : Ptr32 _ETHREAD

 +0x0f4 HardwareTrigger : Uint4B

 +0x0f8 PhysicalVadRoot : Ptr32 _MM_AVL_TABLE

 +0x0fc CloneRoot : Ptr32 Void

 +0x100 NumberOfPrivatePages : Uint4B

 +0x104 NumberOfLockedPages : Uint4B

 +0x108 Win32Process : Ptr32 Void

 +0x10c Job : Ptr32 _EJOB

 +0x110 SectionObject : Ptr32 Void

 +0x114 SectionBaseAddress : Ptr32 Void

 +0x118 QuotaBlock : Ptr32 _EPROCESS_QUOTA_BLOCK

Note that the first field (Pcb) is actually a substructure, the kernel process block

(KPROCESS), which is where scheduling-related information is stored. To display the for-

mat of the kernel process block, type dt _kprocess:

lkd> dt _kprocess

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY

 +0x018 DirectoryTableBase : Uint4B

 +0x01c Unused0 : Uint4B

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : Uint2B

 +0x032 Iopl : UChar

 +0x033 Unused : UChar

 +0x034 ActiveProcessors : Uint4B

 +0x038 KernelTime : Uint4B

 +0x03c UserTime : Uint4B

 +0x040 ReadyListHead : _LIST_ENTRY

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : Ptr32 Void

 +0x050 ThreadListHead : _LIST_ENTRY

 +0x058 ProcessLock : Uint4B

 +0x05c Affinity : Uint4B

 +0x060 AutoAlignment : Pos 0, 1 Bit

 +0x060 DisableBoost : Pos 1, 1 Bit

 +0x060 DisableQuantum : Pos 2, 1 Bit

 +0x060 ReservedFlags : Pos 3, 29 Bits

 +0x060 ProcessFlags : Int4B

 +0x064 BasePriority : Char

 +0x065 QuantumReset : Char

 +0x066 State : UChar

 +0x067 ThreadSeed : UChar

 +0x068 PowerState : UChar

 +0x069 IdealNode : UChar

 Chapter 5 Processes, Threads, and Jobs 339

 +0x06a Visited : UChar

 +0x06b Flags : _KEXECUTE_OPTIONS

 +0x06b ExecuteOptions : UChar

 +0x06c StackCount : Uint4B

 +0x070 ProcessListEntry : _LIST_ENTRY

 +0x078 CycleTime : Uint8B

An alternative way to see the KPROCESS (and other substructures in the EPROCESS) is to

use the recursion (–r) switch of the dt command. For example, typing dt _eprocess –r1

will recurse and display all substructures one level deep.

The dt command shows the format of a process block, not its contents. To show an

instance of an actual process, you can specify the address of an EPROCESS structure as

an argument to the dt command. You can get the address of all the EPROCESS blocks

in the system by using the !process 0 0 command. An annotated example of the output

from this command is included later in this chapter.

Table 5-1 explains some of the fields in the preceding experiment in more detail and includes

references to other places in the book where you can find more information about them. As

we’ve said before and will no doubt say again, processes and threads are such integral parts

of Windows that it’s impossible to talk about them without referring to many other parts of

the system. To keep the length of this chapter manageable, however, we’ve covered those

related subjects (such as memory management, security, objects, and handles) elsewhere.

TABLE 5-1 Contents of the EPROCESS Block

Element Purpose Additional Reference

Kernel process (KPROCESS)

block

Common dispatcher object header,

pointer to the process page directory,

list of kernel thread (KTHREAD) blocks

belonging to the process, default base

priority, affinity mask, and total kernel

and user time and CPU clock cycles for

the threads in the process.

Thread scheduling

(Chapter 5)

Process identification Unique process ID, creating process ID,

name of image being run, window sta-

tion process is running on.

Quota block Limits on processor usage, nonpaged

pool, paged pool, and page file usage

plus current and peak process non-

paged and paged pool usage. (Note:

Several processes can share this struc-

ture: all the system processes in session

0 point to a single systemwide quota

block; all other processes in interactive

sessions share a single quota block.)

340 Windows Internals, Fifth Edition

Element Purpose Additional Reference

Virtual address descriptors

(VADs)

Series of data structures that describes

the status of the portions of the address

space that exist in the process.

Virtual address descrip-

tors (Chapter 9)

Working set information Pointer to working set list (MMWSL

structure); current, peak, minimum, and

maximum working set size; last trim

time; page fault count; memory priority;

outswap flags; page fault history.

Working sets

(Chapter 9)

Virtual memory information Current and peak virtual size, page file

usage, hardware page table entry for

process page directory.

Chapter 9

Exception legacy local proce-

dure call (LPC) port

Interprocess communication channel

to which the process manager sends

a message when one of the process’s

threads causes an exception.

Exception dispatching

(Chapter 3)

Debugging object Executive object through which the

user-mode debugging infrastructure

sends notifications when one of the

process’s threads causes a debug event.

User-mode debugging

(Chapter 3)

Access token (TOKEN) Executive object describing the security

profile of this process.

Chapter 6

Handle table Address of per-process handle table. Object handles and the

process handle table

(Chapter 3)

Device map Address of object directory to resolve

device name references in (supports

multiple users).

Object names

(Chapter 3)

Process environment block

(PEB)

Image information (base address, ver-

sion numbers, module list), process

heap information, and thread-local stor-

age utilization. (Note: The pointers to

the process heaps start at the first byte

after the PEB.)

Chapter 5

Windows subsystem process

block (W32PROCESS)

Process details needed by the kernel-

mode component of the Windows

subsystem.

The kernel process (KPROCESS) block, which is part of the EPROCESS block, and the process

environment block (PEB), which is pointed to by the EPROCESS block, contain additional

details about the process object. The KPROCESS block (which is sometimes called the PCB or

process control block) is illustrated in Figure 5-3. It contains the basic information that the

Windows kernel needs to schedule the threads inside a process. (Page directories are covered

in Chapter 9, and kernel thread blocks are described in more detail later in this chapter.)

 Chapter 5 Processes, Threads, and Jobs 341

The PEB, which lives in the user process address space, contains information needed by the

image loader, the heap manager, and other Windows system DLLs that need to access it from

user mode. (The EPROCESS and KPROCESS blocks are accessible only from kernel mode.) The

basic structure of the PEB is illustrated in Figure 5-4 and is explained in more detail later in

this chapter.

Dispatcher header

Kernel time

Process spinlock

Processor affinity

Resident kernel stack count

Process base priority

Default thread quantum

Process state

Thread seed

Disable boost flag

User time

Inswap/Outswap list entry

Process page directory

KTHREAD

FIGURE 5-3 Structure of the executive process block

Image base address

Module list

Thread-local storage data

Code page data

Critical section timeout

Number of heaps

Heap size information

GDI shared handle table

Image version information

Image process affinity mask

Process heap

Operating system version number information

FIGURE 5-4 Fields of the process environment block

342 Windows Internals, Fifth Edition

EXPERIMENT: Examining the PEB

You can dump the PEB structure with the !peb command in the kernel debugger. To get

the address of the PEB, use the !process command as follows:

lkd> !process

PROCESS 8575f030 SessionId: 1 Cid: 08d0 Peb: 7ffd9000 ParentCid: 0360

 DirBase: 1a81b000 ObjectTable: e12bd418 HandleCount: 66.

 Image: windbg.exe

Then specify that address to the !peb command as follows:

lkd> !peb 7ffd9000

PEB at 7ffd9000

 InheritedAddressSpace: No

 ReadImageFileExecOptions: No

 BeingDebugged: No

 ImageBaseAddress: 002a0000

 Ldr 77895d00

 Ldr.Initialized: Yes

 Ldr.InInitializationOrderModuleList: 00151c38 . 00191558

 Ldr.InLoadOrderModuleList: 00151bb8 . 00191548

 Ldr.InMemoryOrderModuleList: 00151bc0 . 00191550

 Base TimeStamp Module

 2a0000 4678a41e Jun 19 23:50:54 2007 C:\Program Files\Debugging Tools for

 Windows\windbg.exe

 777d0000 4549bdc9 Nov 02 05:43:37 2006 C:\Windows\system32\Ntdll.dll

 764c0000 4549bd80 Nov 02 05:42:24 2006 C:\Windows\system32\kernel32.dll

 SubSystemData: 00000000

 ProcessHeap: 00150000

 ProcessParameters: 001512e0

 WindowTitle: 'C:\Users\Alex Ionescu\Desktop\WinDbg.lnk'

 ImageFile: 'C:\Program Files\Debugging Tools for Windows\windbg.exe'

 CommandLine: '"C:\Program Files\Debugging Tools for Windows\windbg.exe" '

 DllPath: 'C:\Program Files\Debugging Tools for Windows;C:\Windows\

 system32;C:\Windows\system;C:\Windows;.;C:\Windows\system32;C:\Windows;

 C:\Windows\System32\Wbem;C:\Program Files\Common Files\Roxio Shared\

 DLLShared\;C:\Program Files\Common Files\Roxio Shared\DLLShared\;C:\Program

 Files\Common Files\Roxio Shared\9.0\DLLShared\;c:\sysint;C:\Program Files\

 QuickTime\QTSystem\'

 Environment: 001850a8

 ALLUSERSPROFILE=C:\ProgramData

 APPDATA=C:\Users\Alex Ionescu\AppData\Roaming

 .

 .

 .

Kernel Variables

A few key kernel global variables that relate to processes are listed in Table 5-2. These vari-

ables are referred to later in the chapter, when the steps in creating a process are described.

 Chapter 5 Processes, Threads, and Jobs 343

TABLE 5-2 Process-Related Kernel Variables

Element Purpose Additional Reference

PsActiveProcessHead Doubly linked list List head of process blocks

PsIdleProcess Pointer to EPROCESS Idle process block

PsInitialSystemProcess Pointer to EPROCESS Pointer to the process block

of the initial system process

that contains the system

threads

PspCreateProcessNotifyRoutine Array of executive call-

back objects

Array of callback objects

describing the routines to be

called on process creation

and deletion (maximum of

eight)

PspCreateProcessNotifyRoutineCount 32-bit integer Count of registered process

notification routines

PspCreateProcessNotifyRoutineCountEx 32-bit integer Count of registered ex-

tended process notification

routines

PspLoadImageNotifyRoutine Array of executive call-

back objects

Array of callback objects

describing the routines to be

called on image load (maxi-

mum of eight)

PspLoadImageNotifyRoutineCount 32-bit integer Count of registered image-

load notification routines

PspNotifyEnableMask 32-bit integer Mask for quickly checking

whether any extended or

standard notification rou-

tines are enabled

PspCidTable Pointer to HANDLE_

TABLE

Handle table for process and

thread client IDs

Performance Counters

Windows maintains a number of counters with which you can track the processes running

on your system; you can retrieve these counters programmatically or view them with the

Performance tool. Table 5-3 lists the performance counters relevant to processes.

TABLE 5-3 Process-Related Performance Counters

Object: Counter Function

Process: % Privileged Time Describes the percentage of time that the threads in the process

have run in kernel mode during a specified interval.

Process: % Processor Time Describes the percentage of CPU time that the threads in the

process have used during a specified interval. This count is the

sum of % Privileged Time and % User Time.

344 Windows Internals, Fifth Edition

Object: Counter Function

Process: % User Time Describes the percentage of time that the threads in the process

have run in user mode during a specified interval.

Process: Elapsed Time Describes the total elapsed time in seconds since this process

was created.

Process: ID Process Returns the process ID. This ID applies only while the process ex-

ists because process IDs are reused.

Process: Creating Process ID Returns the process ID of the creating process. This value isn’t

updated if the creating process exits.

Process: Thread Count Returns the number of threads in the process.

Process: Handle Count Returns the number of handles open in the process.

Relevant Functions

For reference purposes, some of the Windows functions that apply to processes are

described in Table 5-4. For further information, consult the Windows API documentation in

the MSDN Library.

TABLE 5-4 Process-Related Functions

Function Description

CreateProcess Creates a new process and thread using the caller’s security

identification

CreateProcessAsUser Creates a new process and thread with the specified alternate

security token

CreateProcessWithLogonW Creates a new process and thread to run under the credentials

of the specified username and password

CreateProcessWithTokenW Creates a new process and thread with the specified alternate

security token, with additional options such as allowing the user

profile to be loaded

OpenProcess Returns a handle to the specified process object

ExitProcess Ends a process, and notifies all attached DLLs

TerminateProcess Ends a process without notifying the DLLs

FlushInstructionCache Empties the specified process’s instruction cache

FlushProcessWriteBuffers Empties the specified process’s write queue

GetProcessTimes Obtains a process’s timing information, describing how much

time the threads inside the process spent in user and kernel

mode

QueryProcessCycleTimeCounter Obtains a process’s CPU timing information, describing how

many clock cycles the threads inside the process have spent in

total

Query/
SetProcessAffinityUpdateMode

Defines whether the process’s affinity is automatically updated if

new processors are added to the running system

 Chapter 5 Processes, Threads, and Jobs 345

Function Description

Get/SetProcessDEPPolicy Returns or sets the DEP (Data Execution Protection) policy for

the process

GetExitCodeProcess Returns the exit code for a process, indicating how and why the

process shut down

GetCommandLine Returns a pointer to the command-line string passed to the cur-

rent process

QueryFullProcessImageName Returns the full name of the executable image associated with

the process

GetCurrentProcess Returns a pseudo handle for the current process

GetCurrentProcessId Returns the ID of the current process

GetProcessVersion Returns the major and minor versions of the Windows version

on which the specified process expects to run

GetStartupInfo Returns the contents of the STARTUPINFO structure specified

during CreateProcess

GetEnvironmentStrings Returns the address of the environment block

Get/SetEnvironmentVariable Returns or sets a specific environment variable

Get/
SetProcessShutdownParameters

Defines the shutdown priority and number of retries for the cur-

rent process

SetProcessDPIAware Specifies whether the process is aware of dots per inch (DPI)

settings

GetGuiResources Returns a count of User and GDI handles

EXPERIMENT: Using the Kernel Debugger !process Command

The kernel debugger !process command displays a subset of the information in an

EPROCESS block. This output is arranged in two parts for each process. First you see

the information about the process, as shown here (when you don’t specify a process

address or ID, !process lists information for the active process on the current CPU):

lkd> !process

PROCESS 85857160 SessionId: 1 Cid: 0bcc Peb: 7ffd9000 ParentCid: 090c

 DirBase: b45b0820 ObjectTable: b94ffda0 HandleCount: 99.

 Image: windbg.exe

 VadRoot 85a1c8e8 Vads 97 Clone 0 Private 5919. Modified 153. Locked 1.

 DeviceMap 9d32ee50

 Token ebaa1938

 ElapsedTime 00:48:44.125

 UserTime 00:00:00.000

 KernelTime 00:00:00.000

 QuotaPoolUsage[PagedPool] 166784

 QuotaPoolUsage[NonPagedPool] 4776

 Working Set Sizes (now,min,max) (8938, 50, 345) (35752KB, 200KB, 1380KB)

 PeakWorkingSetSize 8938

 VirtualSize 106 Mb

 PeakVirtualSize 108 Mb

346 Windows Internals, Fifth Edition

 PageFaultCount 37066

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 6242

After the basic process output comes a list of the threads in the process. That output is

explained in the “Experiment: Using the Kernel Debugger !thread Command” section

later in the chapter. Other commands that display process information include !handle,

which dumps the process handle table (which is described in more detail in the section

“Object Handles and the Process Handle Table” in Chapter 3). Process and thread secu-

rity structures are described in Chapter 6.

Protected Processes

In the Windows security model, any process running with a token containing the debug

privilege (such as an administrator’s account) can request any access right that it desires to

any other process running on the machine—for example, it can read and write arbitrary

process memory, inject code, suspend and resume threads, and query information on other

processes. Tools like Process Explorer and Task Manager need and request these access rights

to provide their functionality to users.

This logical behavior (which helps ensure that administrators will always have full control of

the running code on the system) clashes with the system behavior for digital rights man-

agement requirements imposed by the media industry on computer operating systems

that need to support playback of advanced, high-quality digital content such as BluRay and

HD-DVD media. To support reliable and protected playback of such content, Windows uses

protected processes. These processes exist alongside normal Windows processes, but they

add significant constraints to the access rights that other processes on the system (even when

running with administrative privileges) can request.

Protected processes can be created by any application; however, the operating system will

only allow a process to be protected if the image file has been digitally signed with a spe-

cial Windows Media Certificate. The Protected Media Path (PMP) in Windows Vista makes

use of protected processes to provide protection for high-value media, and developers of

applications such as DVD players can make use of protected processes by using the Media

Foundation API.

The Audio Device Graph process (Audiodg.exe) is a protected process, since protected

music content may be decoded through it. Similarly, the Windows Error Reporting (WER;

 Chapter 5 Processes, Threads, and Jobs 347

see Chapter 3 for more information) client process (Werfault.exe) can also run protected

because it needs to have access to protected processes in case one of them crashes. Finally,

the System process itself is protected because some of the decryption information is gener-

ated by the Ksecdd.sys driver and stored in its user-mode memory. The System process is

also protected to protect the integrity of all kernel handles (since the System process’s handle

table contains all the kernel handles on the system).

At the kernel level, support for protected processes is twofold: first, the bulk of process cre-

ation occurs in kernel mode to avoid injection attacks. (The flow for both protected and stan-

dard process creation is described in detail in the next section.) Second, protected processes

have a special bit set in their EPROCESS structure that modifies the behavior of security-

related routines in the process manager to deny certain access rights that would normally be

granted to administrators. Table 5-5 indicates access rights that are limited or denied.

TABLE 5-5 Process Access Rights Denied for Protected Processes

Object: Access Mask Function

Standard: READ_CONTROL Prevents the protected process’s access control list

(ACL) from being read.

Standard: WRITE_DAC, WRITE_OWNER Prevents access to the protected process’s access

control list or modifying its owner (which would grant

the former).

Process: PROCESS_ALL_ACCESS Prevents full access to the protected process.

Process: PROCESS_CREATE_PROCESS Prevents creation of a child process of a protected

 process.

Process: PROCESS_CREATE_THREAD Prevents creation of a thread inside a protected

process.

Process: PROCESS_DUP_HANDLE Prevents duplication of a handle owned by the

protected process.

Process: PROCESS_QUERY_INFORMATION Prevents querying all information on a protected

process. However, a new access right was added,

PROCESS_QUERY_LIMITED_INFORMATION, that grants

limited access to information on the process.

Process: PROCESS_SET_QUOTA Prevents setting memory or processor-usage limits on a

protected process.

Process: PROCESS_SET_INFORMATION Prevents modification of process settings for a

protected process.

Process: PROCESS_VM_OPERATION,

PROCESS_VM_READ, PROCESS_VM_WRITE

Prevents accessing the memory of a protected process.

Certain access rights are also disabled for threads running inside protected processes; we will

look at those access rights later in this chapter in the section “Thread Internals.”

Because Process Explorer uses standard user-mode Windows APIs to query information on

process internals, it is unable to perform certain operations on such processes. On the other

348 Windows Internals, Fifth Edition

hand, a tool like WinDbg in kernel debugging mode, which uses kernel-mode infrastructure

to obtain this information, will be able to display complete information. See the experiment

in the thread internals section on how Process Explorer behaves when confronted with a pro-

tected process such as Audiodg.exe.

Note As mentioned in Chapter 1, to perform local kernel debugging you must boot in

debugging mode (enabled by using “bcdedit /debug on” or by using the Msconfig advanced

boot options). This protects against debugger-based attacks on protected processes and the

Protected Media Path (PMP). When booted in debugging mode, high-definition content play-

back will not work; for example, attempting to play MPEG2 media such as a DVD will result in an

access violation inside the media player (this is by design).

Limiting these access rights reliably allows the kernel to sandbox a protected process from

user-mode access. On the other hand, because a protected process is indicated by a flag in

the EPROCESS block, an administrator can still load a kernel-mode driver that disables this

bit. However, this would be a violation of the PMP model and considered malicious, and

such a driver would likely eventually be blocked from loading on a 64-bit system because

the kernel-mode code-signing policy prohibits the digital signing of malicious code. Even

on 32-bit systems, the driver has to be recognized by PMP policy or else the playback will

be halted. This policy is implemented by Microsoft and not by any kernel detection. This

block would require manual action from Microsoft to identify the signature as malicious and

update the kernel.

Flow of CreateProcess

So far in this chapter, you’ve seen the structures that are part of a process and the API func-

tions with which you (and the operating system) can manipulate processes. You’ve also found

out how you can use tools to view how processes interact with your system. But how did

those processes come into being, and how do they exit once they’ve fulfilled their purpose?

In the following sections, you’ll discover how a Windows process comes to life.

A Windows subsystem process is created when an application calls one of the process cre-

ation functions, such as CreateProcess, CreateProcessAsUser, CreateProcessWithTokenW, or

CreateProcessWithLogonW. Creating a Windows process consists of several stages carried out

in three parts of the operating system: the Windows client-side library Kernel32.dll (in the

case of the CreateProcessAsUser, CreateProcessWithTokenW, and CreateProcessWithLogonW

routines, part of the work is first done in Advapi32.dll), the Windows executive, and the

Windows subsystem process (Csrss).

 Chapter 5 Processes, Threads, and Jobs 349

Because of the multiple environment subsystem architecture of Windows, creating an execu-

tive process object (which other subsystems can use) is separated from the work involved in

creating a Windows subsystem process. So, although the following description of the flow

of the Windows CreateProcess function is complicated, keep in mind that part of the work

is specific to the semantics added by the Windows subsystem as opposed to the core work

needed to create an executive process object.

The following list summarizes the main stages of creating a process with the Windows

CreateProcess function. The operations performed in each stage are described in detail in the

subsequent sections. Some of these operations may be performed by CreateProcess itself (or

other helper routines in user mode), while others will be performed by NtCreateUserProcess
or one of its helper routines in kernel mode. In our detailed analysis to follow, we will differ-

entiate between the two at each step required.

Note Many steps of CreateProcess are related to the setup of the process virtual address space

and therefore refer to many memory management terms and structures that are defined in

Chapter 9.

 1. Validate parameters; convert Windows subsystem flags and options to their native

counterparts; parse, validate, and convert the attribute list to its native counterpart.

 2. Open the image file (.exe) to be executed inside the process.

 3. Create the Windows executive process object.

 4. Create the initial thread (stack, context, and Windows executive thread object).

 5. Perform post-creation, Windows-subsystem-specific process initialization.

 6. Start execution of the initial thread (unless the CREATE_ SUSPENDED flag was specified).

 7. In the context of the new process and thread, complete the initialization of the address

space (such as load required DLLs) and begin execution of the program.

Figure 5-5 shows an overview of the stages Windows follows to create a process.

350 Windows Internals, Fifth Edition

Open EXE and
create section

object

Set up for new
process and

thread

Final
process/image
initialization

Create
Windows

process object

Create
Windows

thread object

Perform Windows-
subsystem−specific
process initialization

Start execution
of the initial

thread

Return
to caller!

Start execution
at entry point

to image

Creating process

Stage 1

Stage 2

Stage 3

Stage 4

Stage 5

Windows subsystem

New process

Stage 7

Convert and validate
parameters and

flags

Stage 6

FIGURE 5-5 The main stages of process creation

Stage 1: Converting and Validating Parameters and Flags

Before opening the executable image to run, CreateProcess performs the following steps:

In CreateProcess, the priority class for the new process is specified as independent bits

in the CreationFlags parameter. Thus, you can specify more than one priority class for

a single CreateProcess call. Windows resolves the question of which priority class to

assign to the process by choosing the lowest-priority class set.

If no priority class is specified for the new process, the priority class defaults to Normal

unless the priority class of the process that created it is Idle or Below Normal, in which

case the priority class of the new process will have the same priority as the creating

class.

 Chapter 5 Processes, Threads, and Jobs 351

If a Real-time priority class is specified for the new process and the process’s caller

doesn’t have the Increase Scheduling Priority privilege, the High priority class is used

instead. In other words, CreateProcess doesn’t fail just because the caller has insufficient

privileges to create the process in the Real-time priority class; the new process just

won’t have as high a priority as Real-time.

All windows are associated with desktops, the graphical representation of a workspace.

If no desktop is specified in CreateProcess, the process is associated with the caller’s

current desktop.

If the process is part of a job object, but the creation flags requested a separate virtual

DOS machine (VDM), the flag is ignored.

If the caller is sending a handle to a monitor as an output handle instead of a console

handle, standard handle flags are ignored.

If the creation flags specify that the process will be debugged, Kernel32 initiates a con-

nection to the native debugging code in Ntdll.dll by calling DbgUiConnectToDbg and

gets a handle to the debug object from the thread environment block (TEB) once the

function returns.

Kernel32.dll sets the default hard error mode if the creation flags specified one.

The user-specified attribute list is converted from Windows subsystem format to native

format, and internal attributes are added to it.

Note The attribute list passed on a CreateProcess call permits passing back to the caller infor-

mation beyond a simple status code, such as the TEB address of the initial thread or information

on the image section. This is necessary for protected processes since the parent cannot query

this information after the child is created.

Once these steps are completed, CreateProcess will perform the initial call to NtCreateUser-
Process to attempt creation of the process. Because Kernel32.dll has no idea at this point

whether the application image name is a real Windows application, or if it might be a POSIX,

16-bit, or DOS application, the call may fail, at which point CreateProcess will look at the

error reason and attempt to correct the situation.

Stage 2: Opening the Image to Be Executed

As illustrated in Figure 5-6, the first stage in NtCreateUserProcess is to find the appropriate

Windows image that will run the executable file specified by the caller and to create a sec-

tion object to later map it into the address space of the new process. If the call failed for

any reason, it will return to CreateProcess with a failure state (see Table 5-6) that will cause

CreateProcess to attempt execution again.

If the executable file specified is a Windows .exe, NtCreateUserProcess will try to open the file

and create a section object for it. The object isn’t mapped into memory yet, but it is opened.

352 Windows Internals, Fifth Edition

Just because a section object has been successfully created doesn’t mean that the file is a

valid Windows image, however; it could be a DLL or a POSIX executable. If the file is a POSIX

executable, the image to be run changes to Posix.exe, and CreateProcess restarts from the

beginning of Stage 1. If the file is a DLL, CreateProcess fails.

Now that NtCreateUserProcess has found a valid Windows executable image, as part of the

process creation code described in Stage 3 it looks in the registry under HKLM\SOFTWARE\

Microsoft\Windows NT\CurrentVersion\Image File Execution Options to see whether a sub-

key with the file name and extension of the executable image (but without the directory

and path information—for example, Image.exe) exists there. If it does, PspAllocateProcess
looks for a value named Debugger for that key. If this value is present, the image to be run

becomes the string in that value and CreateProcess restarts at Stage 1.

Tip You can take advantage of this process creation behavior and debug the startup code of

Windows services processes before they start rather than attach the debugger after starting a

service, which doesn’t allow you to debug the startup code.

On the other hand, if the image is not a Windows .exe (for example, if it’s an MS-DOS, Win16,

or a POSIX application), CreateProcess goes through a series of steps to find a Windows sup-
port image to run it. This process is necessary because non-Windows applications aren’t run

directly—Windows instead uses one of a few special support images that in turn are respon-

sible for actually running the non-Windows program. For example, if you attempt to run a

POSIX application, CreateProcess identifies it as such and changes the image to be run to the

Windows executable file Posix.exe. If you attempt to run an MS-DOS or a Win16 executable,

the image to be run becomes the Windows executable Ntvdm.exe. In short, you can’t directly

create a process that is not a Windows process. If Windows can’t find a way to resolve the

activated image as a Windows process (as shown in Table 5-6), CreateProcess fails.

FIGURE 5-6 Choosing a Windows image to activate

 Chapter 5 Processes, Threads, and Jobs 353

TABLE 5-6 Decision Tree for Stage 1 of CreateProcess

If the Image . . . Create State Code

This Image

Will Run . . .

. . . and This

Will Happen

Is a POSIX executable file PsCreateSuccess Posix.exe CreateProcess
restarts Stage 1.

Is an MS-DOS application

with an .exe, a .com, or a

.pif extension

PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess
restarts Stage 1.

Is a Win16 application PsCreateFailOnSectionCreate Ntvdm.exe CreateProcess
restarts Stage 1.

Is a Win64 application on

a 32-bit system (or a PPC,

MIPS, or Alpha Binary)

PsCreateFailMachineMismatch N/A CreateProcess will

fail.

Has a Debugger key with

another image name

PsCreateFailExeName Name specified

in the Debugger

key

CreateProcess
restarts Stage 1.

Is an invalid or damaged

Windows EXE

PsCreateFailExeFormat N/A CreateProcess will

fail.

Cannot be opened PsCreateFailOnFileOpen N/A CreateProcess will

fail.

Is a command procedure

(application with a .bat or

a .cmd extension)

PsCreateFailOnSectionCreate Cmd.exe CreateProcess
restarts Stage 1.

Specifically, the decision tree that CreateProcess goes through to run an image is as follows:

If the image is an MS-DOS application with an .exe, a .com, or a .pif extension, a mes-

sage is sent to the Windows subsystem to check whether an MS-DOS support process

(Ntvdm.exe, specified in the registry value HKLM\SYSTEM\CurrentControlSet\Control\

WOW\cmdline) has already been created for this session. If a support process has been

created, it is used to run the MS-DOS application. (The Windows subsystem sends

the message to the VDM [Virtual DOS Machine] process to run the new image.) Then

CreateProcess returns. If a support process hasn’t been created, the image to be run

changes to Ntvdm.exe and CreateProcess restarts at Stage 1.

If the file to run has a .bat or a .cmd extension, the image to be run becomes Cmd.exe,

the Windows command prompt, and CreateProcess restarts at Stage 1. (The name of

the batch file is passed as the first parameter to Cmd.exe.)

If the image is a Win16 (Windows 3.1) executable, CreateProcess must decide whether

a new VDM process must be created to run it or whether it should use the default

sessionwide shared VDM process (which might not yet have been created). The

CreateProcess flags CREATE_SEPARATE_WOW_VDM and CREATE_SHARED_WOW_VDM

control this decision. If these flags aren’t specified, the registry value HKLM\SYSTEM\

CurrentControlSet\Control\WOW\DefaultSeparateVDM dictates the default behavior.

354 Windows Internals, Fifth Edition

If the application is to be run in a separate VDM, the image to be run changes to

the value of HKLM\SYSTEM\CurrentControlSet\Control\WOW\wowcmdline and

CreateProcess restarts at Stage 1. Otherwise, the Windows subsystem sends a mes-

sage to see whether the shared VDM process exists and can be used. (If the VDM

process is running on a different desktop or isn’t running under the same security as

the caller, it can’t be used and a new VDM process must be created.) If a shared VDM

process can be used, the Windows subsystem sends a message to it to run the new

image and CreateProcess returns. If the VDM process hasn’t yet been created (or if it

exists but can’t be used), the image to be run changes to the VDM support image and

CreateProcess restarts at Stage 1.

Stage 3: Creating the Windows Executive Process Object
(PspAllocateProcess)
At this point, NtCreateUserProcess has opened a valid Windows executable file and cre-

ated a section object to map it into the new process address space. Next it creates a

Windows executive process object to run the image by calling the internal system function

PspAllocateProcess. Creating the executive process object (which is done by the creating

thread) involves the following substages:

Setting up the EPROCESS block

Creating the initial process address space

Initializing the kernel process block (KPROCESS)

Setting up the PEB

Concluding the setup of the process address space (which includes initializing the work-

ing set list and virtual address space descriptors and mapping the image into address

space)

Note The only time there won’t be a parent process is during system initialization. After that

point, a parent process is always required to provide a security context for the new process.

Stage 3A: Setting Up the EPROCESS Block

This substage involves the following steps:

 1. Allocate and initialize the Windows EPROCESS block.

 2. Inherit the Windows device namespace (including the definition of drive letters, COM

ports, and so on).

 Chapter 5 Processes, Threads, and Jobs 355

 3. Inherit the process affinity mask and page priority from the parent process. If there is

no parent process, the default page priority (5) is used, and an affinity mask of all pro-

cessors (KeActiveProcessors) is used.

 4. Set the new process’s quota block to the address of its parent process’s quota block,

and increment the reference count for the parent’s quota block. If the process was cre-

ated through CreateProcessAsUser, this step won’t occur.

 5. The process minimum and maximum working set size are set to the values of Psp-
MinimumWorkingSet and PspMaximumWorkingSet, respectively. These values can be

overridden if performance options were specified in the PerfOptions key part of Image

File Execution Options, in which case the maximum working set is taken from there.

 6. Store the parent process’s process ID in the InheritedFromUniqueProcessId field in the

new process object.

 7. Attach the process to the session of the parent process.

 8. Initialize the KPROCESS part of the process object. (See Stage 3C.)

 9. Create the process’s primary access token (a duplicate of its parent’s primary token).

New processes inherit the security profile of their parents. If the CreateProcessAsUser
function is being used to specify a different access token for the new process, the token

is then changed appropriately.

 10. The process handle table is initialized. If the inherit handles flag is set for the parent

process, any inheritable handles are copied from the parent’s object handle table into

the new process. (For more information about object handle tables, see Chapter 3.) A

process attribute can also be used to specify only a subset of handles, which is useful

when you are using CreateProcessAsUser to restrict which objects should be inherited

by the child process.

 11. If performance options were specified through the PerfOptions key, these are now

applied. The PerfOptions key includes overrides for the working set limit, I/O priority,

page priority, and CPU priority class of the process.

 12. The process priority class and quantum are computed and set.

 13. Set the new process’s exit status to STATUS_PENDING.

Stage 3B: Creating the Initial Process Address Space

The initial process address space consists of the following pages:

Page directory (and it’s possible there’ll be more than one for systems with page tables

more than two levels, such as x86 systems in PAE mode or 64-bit systems)

Hyperspace page

Working set list

356 Windows Internals, Fifth Edition

To create these three pages, the following steps are taken:

 1. Page table entries are created in the appropriate page tables to map the initial pages.

 2. The number of pages is deducted from the kernel variable MmTotalCommittedPages
and added to MmProcessCommit.

 3. The systemwide default process minimum working set size (PsMinimumWorkingSet) is
deducted from MmResidentAvailablePages.

 4. The page table pages for the nonpaged portion of system space and the system cache

are mapped into the process.

Stage 3C: Creating the Kernel Process Block

The next stage of PspAllocateProcess is the initialization of the KPROCESS block. This work is

performed by KeInitializeProcess, which contains:

A pointer to a list of kernel threads. (The kernel has no knowledge of handles, so it

bypasses the object table.)

A pointer to the process’s page table directory (which is used to keep track of the pro-

cess’s virtual address space).

The total time the process’s threads have executed.

The number of clock cycles the process’s threads have consumed.

The process’s default base-scheduling priority (which starts as Normal, or 8, unless the

parent process was set to Idle or Below Normal, in which case the setting is inherited).

The default processor affinity for the threads in the process.

The process swapping state (resident, out-swapped, or in transition).

The NUMA ideal node (initially set to 0).

The thread seed, based on the ideal processor that the kernel has chosen for this pro-

cess (which is based on the previously created process’s ideal processor, effectively ran-

domizing this in a round-robin manner). Creating a new process will update the seed

in KeNodeBlock (the initial NUMA node block) so that the next new process will get a

different ideal processor seed.

The initial value (or reset value) of the process default quantum (which is described

in more detail in the “Thread Scheduling” section later in the chapter), which is hard-

coded to 6 until it is initialized later (by PspComputeQuantumAndPriority).

Note The default initial quantum differs between Windows client and server systems. For more

information on thread quantums, turn to their discussion in the section “Thread Scheduling.”

 Chapter 5 Processes, Threads, and Jobs 357

Stage 3D: Concluding the Setup of the Process Address Space

Setting up the address space for a new process is somewhat complicated, so let’s look at

what’s involved one step at a time. To get the most out of this section, you should have

some familiarity with the internals of the Windows memory manager, which are described in

Chapter 9.

The virtual memory manager sets the value of the process’s last trim time to the current

time. The working set manager (which runs in the context of the balance set manager

system thread) uses this value to determine when to initiate working set trimming.

The memory manager initializes the process’s working set list—page faults can now be

taken.

The section (created when the image file was opened) is now mapped into the new

process’s address space, and the process section base address is set to the base address

of the image.

Ntdll.dll is mapped into the process.

Note POSIX processes clone the address space of their parents, so they don’t have to go

through these steps to create a new address space. In the case of POSIX applications, the new

process’s section base address is set to that of its parent process and the parent’s PEB is cloned

for the new process.

Stage 3E: Setting Up the PEB

NtCreateUserProcess calls MmCreatePeb, which first maps the systemwide national language

support (NLS) tables into the process’s address space. It next calls MiCreatePebOrTeb to

allocate a page for the PEB and then initializes a number of fields, which are described in

Table 5-7.

TABLE 5-7 Initial Values of the Fields of the PEB

Field Initial Value

ImageBaseAddress Base address of section

NumberOfProcessors KeNumberProcessors kernel variable

NtGlobalFlag NtGlobalFlag kernel variable

CriticalSectionTimeout MmCriticalSectionTimeout kernel variable

HeapSegmentReserve MmHeapSegmentReserve kernel variable

HeapSegmentCommit MmHeapSegmentCommit kernel variable

HeapDeCommitTotalFreeThreshold MmHeapDeCommitTotalFreeThreshold kernel variable

HeapDeCommitFreeBlockThreshold MmHeapDeCommitFreeBlockThreshold kernel variable

NumberOfHeaps 0

358 Windows Internals, Fifth Edition

Field Initial Value

MaximumNumberOfHeaps (Size of a page – size of a PEB) / 4

ProcessHeaps First byte after PEB

MinimumStackCommit MmMinimumStackCommitInBytes kernel variable

ImageProcessAffi nityMask KeActiveProcessors or 1 <<

MmRotatingUniprocessorNumber kernel variable (for

uniprocessor-only images)

SessionId Result of MmGetSessionId

ImageSubSystem OptionalHeader.Subsystem

ImageSubSystemMajorVersion OptionalHeader.MajorSubsystemVersion

ImageSubSystemMinorVersion OptionalHeader.MinorSubsystemVersion

OSMajorVersion NtMajorVersion kernel variable

OSMinorVersion NtMinorVersion kernel variable

OSBuildNumber NtBuildNumber kernel variable & 0x3FFF, combined with

CmNtCSDVersion for service packs

OSPlatformId 2

 However, if the image fi le specifi es explicit Windows version or affi nity values, this informa-

tion replaces the initial values shown in Table 5-7. The mapping from image information

fi elds to PEB fi elds is described in Table 5-8.

 TABLE 5-8 Windows Replacements for Initial PEB Values

Field Name Value Taken from Image Header

 OSMajorVersion OptionalHeader.Win32VersionValue & 0xFF

 OSMinorVersion (OptionalHeader.Win32VersionValue >> 8) & 0xFF

 OSBuildNumber (OptionalHeader.Win32VersionValue >> 16) & 0x3FFF, combined with

ImageLoadConfi gDirectory.CSDVersion

 OSPlatformId (OptionalHeader.Win32VersionValue >> 30) ^ 0x2

 ImageProcessAffi nityMask ImageLoadConfi gDirectory.ProcessAffi nityMask

 If the image header characteristics IMAGE_FILE_UP_SYSTEM_ONLY fl ag is set (indicating that

the image can run only on a uniprocessor system), a single CPU is chosen for all the threads

in this new process to run on. The selection process is performed by simply cycling through

the available processors—each time this type of image is run, the next processor is used. In

this way, these types of images are spread evenly across the processors.

If the image specifi es an explicit processor affi nity mask (for example, a fi eld in the confi gura-

tion header), this value is copied to the PEB and later set as the default process affi nity mask .

Field Name Value Taken from Image Header

 Chapter 5 Processes, Threads, and Jobs 359

Stage 3F: Completing the Setup of the Executive Process Object
(PspInsertProcess)
Before the handle to the new process can be returned, a few final setup steps must be com-

pleted, which are performed by PspInsertProcess and its helper functions:

 1. If systemwide auditing of processes is enabled (either as a result of local policy settings

or group policy settings from a domain controller), the process’s creation is written to

the Security event log.

 2. If the parent process was contained in a job, the job is recovered from the job level set

of the parent and then bound to the session of the newly created process. Finally, the

new process is added to the job.

 3. PspInsertProcess inserts the new process block at the end of the Windows list of active

processes (PsActiveProcessHead).

 4. The process debug port of the parent process is copied to the new child process, unless

the NoDebugInherit flag is set (which can be requested when creating the process). If a

debug port was specified, it is attached to the new process at this time.

 5. Finally, PspInsertProcess notifies any registered callback routines, creates a handle for

the new process by calling ObOpenObjectByPointer, and then returns this handle to the

caller.

Stage 4: Creating the Initial Thread and Its Stack and Context

At this point, the Windows executive process object is completely set up. It still has no

thread, however, so it can’t do anything yet. It’s now time to start that work. Normally, the

PspCreateThread routine is responsible for all aspects of thread creation and is called by

NtCreateThread when a new thread is being created. However, because the initial thread

is created internally by the kernel without user-mode input, the two helper routines that

PspCreateThread relies on are used instead: PspAllocateThread and PspInsertThread.

PspAllocateThread handles the actual creation and initialization of the executive thread object

itself, while PspInsertThread handles the creation of the thread handle and security attributes

and the call to KeStartThread to turn the executive object into a schedulable thread on the

system. However, the thread won’t do anything yet—it is created in a suspended state and

isn’t resumed until the process is completely initialized (as described in Stage 5).

Note The thread parameter (which can’t be specified in CreateProcess but can be specified in

CreateThread) is the address of the PEB. This parameter will be used by the initialization code

that runs in the context of this new thread (as described in Stage 6).

360 Windows Internals, Fifth Edition

PspAllocateThread performs the following steps:

 1. An executive thread block (ETHREAD) is created and initialized.

 2. Before the thread can execute, it needs a stack and a context in which to run, so these

are set up. The stack size for the initial thread is taken from the image—there’s no way

to specify another size.

 3. The thread environment block (TEB) is allocated for the new thread.

 4. The user-mode thread start address is stored in the ETHREAD. This is the system-

supplied thread startup function in Ntdll.dll (RtlUserThreadStart). The user’s specified

Windows start address is stored in the ETHREAD block in a different location so that

debugging tools such as Process Explorer can query the information.

 5. KeInitThread is called to set up the KTHREAD block. The thread’s initial and current

base priorities are set to the process’s base priority, and its affinity and quantum are

set to that of the process. This function also sets the initial thread ideal processor.

(See the section “Ideal and Last Processor” for a description of how this is chosen.)

KeInitThread next allocates a kernel stack for the thread and initializes the machine-

dependent hardware context for the thread, including the context, trap, and exception

frames. The thread’s context is set up so that the thread will start in kernel mode in

KiThreadStartup. Finally, KeInitThread sets the thread’s state to Initialized and returns to

PspAllocateThread.

Once that work is finished, NtCreateUserProcess will call PspInsertThread to perform the fol-

lowing steps:

 1. A thread ID is generated for the new thread.

 2. The thread count in the process object is incremented, and the thread is added into the

process thread list.

 3. The thread is put into a suspended state.

 4. The object is inserted and any registered thread callbacks are called.

 5. The handle is created with ObOpenObjectByName.

 6. The thread is readied for execution by calling KeStartThread.

Stage 5: Performing Windows Subsystem–Specific
Post-Initialization

Once NtCreateUserProcess returns with a success code, all the necessary executive process

and thread objects have been created. Kernel32.dll will now perform various operations

related to Windows subsystem–specific operations to finish initializing the process.

 Chapter 5 Processes, Threads, and Jobs 361

First of all, various checks are made for whether Windows should allow the executable to

run. These checks includes validating the image version in the header and checking whether

Windows application certification has blocked the process (through a group policy). On

 specialized editions of Windows Server 2008, such as Windows Web Server 2008 and

Windows HPC Server 2008, additional checks are made to see if the application imports any

disallowed APIs.

If software restriction policies dictate, a restricted token is created for the new process.

Afterward, the application compatibility database is queried to see if an entry exists in either

the registry or system application database for the process. Compatibility shims will not be

applied at this point—the information will be stored in the PEB once the initial thread starts

executing (Stage 6).

At this point, Kernel32.dll sends a message to the Windows subsystem so that it can set up

SxS information (see the end of this section for more information on side-by-side assemblies)

such as manifest files, DLL redirection paths, and out-of-process execution for the new pro-

cess. It also initializes the Windows subsystem structures for the process and initial thread.

The message includes the following information:

Process and thread handles

Entries in the creation flags

ID of the process’s creator

Flag indicating whether the process belongs to a Windows application (so that Csrss

can determine whether or not to show the startup cursor)

UI language Information

DLL redirection and .local flags

Manifest file information

The Windows subsystem performs the following steps when it receives this message:

 1. CsrCreateProcess duplicates a handle for the process and thread. In this step, the usage

count of the process and the thread is incremented from 1 (which was set at creation

time) to 2.

 2. If a process priority class isn’t specified, CsrCreateProcess sets it according to the algo-

rithm described earlier in this section.

 3. The Csrss process block is allocated.

 4. The new process’s exception port is set to be the general function port for the

Windows subsystem so that the Windows subsystem will receive a message when a

second chance exception occurs in the process. (For further information on exception

handling, see Chapter 3.)

362 Windows Internals, Fifth Edition

 5. The Csrss thread block is allocated and initialized.

 6. CsrCreateThread inserts the thread in the list of threads for the process.

 7. The count of processes in this session is incremented.

 8. The process shutdown level is set to 0x280 (the default process shutdown level—

see SetProcessShutdownParameters in the MSDN Library documentation for more

information).

 9. The new process block is inserted into the list of Windows subsystem-wide processes.

 10. The per-process data structure used by the kernel-mode part of the Windows subsys-

tem (W32PROCESS structure) is allocated and initialized.

 11. The application start cursor is displayed. This cursor is the familiar rolling doughnut

shape—the way that Windows says to the user, “I’m starting something, but you can

use the cursor in the meantime.” If the process doesn’t make a GUI call after 2 seconds,

the cursor reverts to the standard pointer. If the process does make a GUI call in the

allotted time, CsrCreateProcess waits 5 seconds for the application to show a window.

After that time, CsrCreateProcess will reset the cursor again.

After Csrss has performed these steps, CreateProcess checks whether the process was run

elevated (which means it was executed through ShellExecute and elevated by the AppInfo

service after the consent dialog box was shown to the user). This includes checking whether

the process was a setup program. If it was, the process’s token is opened, and the virtualiza-

tion flag is turned on so that the application is virtualized. (See the information on UAC and

virtualization in Chapter 6.) If the application contained elevation shims or had a requested

elevation level in its manifest, the process is destroyed and an elevation request is sent to the

AppInfo service. (See Chapter 6 for more information on elevation.)

Note that most of these checks are not performed for protected processes; because these

processes must have been designed for Windows Vista or later, there’s no reason why they

should require elevation, virtualization, or application compatibility checks and process-

ing. Additionally, allowing mechanisms such as the shim engine to use its usual hooking and

memory patching techniques on a protected process would result in a security hole if some-

one could figure how to insert arbitrary shims that modify the behavior of the protected

process.

Stage 6: Starting Execution of the Initial Thread

At this point, the process environment has been determined, resources for its threads to use

have been allocated, the process has a thread, and the Windows subsystem knows about the

new process. Unless the caller specified the CREATE_ SUSPENDED flag, the initial thread is

now resumed so that it can start running and perform the remainder of the process initializa-

tion work that occurs in the context of the new process (Stage 7).

 Chapter 5 Processes, Threads, and Jobs 363

Stage 7: Performing Process Initialization in the Context of
the New Process

The new thread begins life running the kernel-mode thread startup routine KiThreadStartup.

KiThreadStartup lowers the thread’s IRQL level from DPC/dispatch level to APC level and then

calls the system initial thread routine, PspUserThreadStartup. The user-specified thread start

address is passed as a parameter to this routine.

First, this function sets the Locale ID and the ideal processor in the TEB, based on the infor-

mation present in kernel-mode data structures, and then it checks if thread creation actually

failed. Next it calls DbgkCreateThread, which checks if image notifications were sent for the

new process. If they weren’t, and notifications are enabled, an image notification is sent first

for the process and then for the image load of Ntdll.dll. Note that this is done in this stage

rather than when the images were first mapped, because the process ID (which is required

for the callouts) is not yet allocated at that time.

Once those checks are completed, another check is performed to see whether the process

is a debuggee. If it is, then PspUserThreadStartup checks if the debugger notifications have

already been sent for this process. If not, then a create process message is sent through the

debug object (if one is present) so that the process startup debug event (CREATE_PROCESS_

DEBUG_INFO) can be sent to the appropriate debugger process. This is followed by a similar

thread startup debug event and by another debug event for the image load of Ntdll.dll.

DbgkCreateThread then waits for the Windows subsystem to get the reply from the debug-

ger (via the ContinueDebugEvent function).

Now that the debugger has been notified, PspUserThreadStartup looks at the result of the

initial check on the thread’s life. If it was killed on startup, the thread is terminated. This check

is done after the debugger and image notifications to be sure that the kernel-mode and

user-mode debuggers don’t miss information on the thread, even if the thread never got a

chance to run.

Otherwise, the routine checks whether application prefetching is enabled on the system and,

if so, calls the prefetcher (and Superfetch) to process the prefetch instruction file (if it exists)

and prefetch pages referenced during the first 10 seconds the last time the process ran. (For

details on the prefetcher and Superfetch, see Chapter 9.)

PspUserThreadStartup then checks if the systemwide cookie in the SharedUserData structure

has been set up yet. If it hasn’t, it generates it based on a hash of system information such as

the number of interrupts processed, DPC deliveries, and page faults. This systemwide cookie

is used in the internal decoding and encoding of pointers, such as in the heap manager

(for more information on heap manager security, see Chapter 9), to protect against certain

classes of exploitation.

364 Windows Internals, Fifth Edition

Finally, PspUserThreadStartup sets up the initial thunk context to run the image loader initial-

ization routine (LdrInitializeThunk in Ntdll.dll), as well as the systemwide thread startup stub

(RtlUserThreadStart in Ntdll.dll). These steps are done by editing the context of the thread

in place and then issuing an exit from system service operation, which will load the specially

crafted user context. The LdrInitializeThunk routine initializes the loader, heap manager, NLS

tables, thread-local storage (TLS) and fiber-local storage (FLS) array, and critical section struc-

tures. It then loads any required DLLs and calls the DLL entry points with the DLL_PROCESS_

ATTACH function code. (See the sidebar “Side-by-Side Assemblies” for a description of a

mechanism Windows uses to address DLL versioning problems.)

Once the function returns, NtContinue will restore the new user context and return back to

user mode—thread execution now truly starts.

RtlUserThreadStart will use the address of the actual image entry point and the start param-

eter and call the application. These two parameters have also already been pushed onto the

stack by the kernel. This complicated series of events has two purposes. First of all, it allows

the image loader inside Ntdll.dll to set up the process internally and behind the scenes so

that other user-mode code can run properly (otherwise, it would have no heap, no thread

local storage, and so on).

Second, having all threads begin in a common routine allows them to be wrapped in excep-

tion handling, so that when they crash, Ntdll.dll is aware of that and can call the unhandled

exception filter inside Kernel32.dll. It is also able to coordinate thread exit on return from the

thread’s start routine and to perform various cleanup work. Application developers can also

call SetUnhandledExceptionFilter to add their own unhandled exception handling code.

Side-by-Side Assemblies

In order to isolate DLLs distributed with applications from DLLs that ship with the oper-

ating system, Windows allows applications to use private copies of these core DLLs. To

use a private copy of a DLL instead of the one in the system directory, an application’s

installation must include a file named Application.exe.local (where Application is the

name of the application’s executable), which directs the loader to first look for DLLs in

that directory. Note that any DLLs that are loaded from the list of KnownDLLs (DLLs

that are permanently mapped into memory) or that are loaded by those DLLs cannot

be redirected using this mechanism.

To further address application and DLL compatibility while allowing sharing, Windows

implements the concept of shared assemblies. An assembly consists of a group of

resources, including DLLs, and an XML manifest file that describes the assembly and its

contents. An application references an assembly through the existence of its own XML

manifest. The manifest can be a file in the application’s installation directory that has

 Chapter 5 Processes, Threads, and Jobs 365

the same name as the application with “.manifest” appended (for example, applica-

tion.exe.manifest), or it can be linked into the application as a resource. The manifest

describes the application and its dependence on assemblies.

There are two types of assemblies: private and shared. The difference between the

two is that shared assemblies are digitally signed so that corruption or modification

of their contents can be detected. In addition, shared assemblies are stored under the

\Windows\Winsxs directory, whereas private assemblies are stored in an application’s

installation directory. Thus, shared assemblies also have an associated catalog file (.cat)

that contains its digital signature information. Shared assemblies can be “side-by-side”

assemblies because multiple versions of a DLL can reside on a system simultaneously,

with applications dependent on a particular version of a DLL always using that particu-

lar version.

An assembly’s manifest file typically has a name that includes the name of the assem-

bly, version information, some text that represents a unique signature, and the exten-

sion “.manifest”. The manifests are stored in \Windows\Winsxs\Manifests, and the rest

of the assembly’s resources are stored in subdirectories of \Windows\Winsxs that have

the same name as the corresponding manifest files, with the exception of the trailing

.manifest extension.

An example of a shared assembly is version 6 of the Windows common controls DLL,

comctl32.dll. Its manifest file is named \Windows\Winsxs\Manifests\x86_Microsoft.Win-

dows.Common-Controls_6595b64144ccf1df_6.0.0.0_x-ww_1382d70a.manifest. It has an

associated catalog file (which is the same name with the .cat extension) and a subdirec-

tory of Winsxs that includes comctl32.dll.

Version 6 of Comctl32.dll added integration with Windows themes, and because

applications not written with theme support in mind might not appear correctly with

the new DLL, it’s available only to applications that explicitly reference the shared

assembly containing it—the version of Comctl32.dll installed in \Windows\System32 is

an instance of version 5.x, which is not theme aware. When an application loads, the

loader looks for the application’s manifest, and if one exists, loads the DLLs from the

assemblies specified. DLLs not included in assemblies referenced in the manifest are

loaded in the traditional way. Legacy applications, therefore, link against the version in

\Windows\System32, whereas theme-aware applications can specify the new version in

their manifest.

A final advantage that shared assemblies have is that a publisher can issue a publisher

configuration, which can redirect all applications that use a particular assembly to use

an updated version. Publishers would do this if they were preserving backward com-

patibility while addressing bugs. Ultimately, however, because of the flexibility inherent

in the assembly model, an application could decide to override the new setting and

continue to use an older version.

366 Windows Internals, Fifth Edition

EXPERIMENT: Tracing Process Startup

Now that we’ve looked in detail at how a process starts up and the different operations

required to begin executing an application, we’re going to use Process Monitor to take

a look at some of the file I/O and registry keys that are accessed during this process.

Although this experiment will not provide a complete picture of all the internal steps

we’ve described, you’ll be able to see several parts of the system in action, notably

Prefetch and Superfetch, image file execution options and other compatibility checks,

and the image loader’s DLL mapping.

We’re going to be looking at a very simple executable—Notepad.exe—and we will be

launching it from a Command Prompt window (Cmd.exe). It’s important that we look

both at the operations inside Cmd.exe and those inside Notepad.exe. Recall that a lot of

the user-mode work is performed by CreateProcess, which is called by the parent pro-

cess before the kernel has created a new process object.

To set things up correctly, add two filters to Process Monitor: one for Cmd.exe, and one

for Notepad.exe—these are the only two processes we want to include. It will be helpful

to be sure that you don’t have any currently running instances of these two processes so

that you know you’re looking at the right events. The filter window should look like this:

Next, make sure that event logging is currently disabled (clear File, Capture Events), and

then start up the command prompt. Enable event logging (using the File menu again,

or simply press CTRL+E or click the magnifying glass icon on the toolbar) and then

enter Notepad.exe and press Enter. On a typical Windows Vista system, you should

see anywhere between 500 and 1500 events appear. Go ahead and hide the Sequence

and Time Of Day columns so that we can focus our attention on the columns of inter-

est. Your window should look similar to the one shown next.

 Chapter 5 Processes, Threads, and Jobs 367

Just as described in Stage 1 of the CreateProcess flow, one of the first things to notice

is that just before the process is started and the first thread is created, Cmd.exe does a

registry read at HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File

Execution Options. Because there were no image execution options associated with

Notepad.exe, the process was created as is.

As with this and any other event in Process Monitor’s log, you have the ability to see

whether each part of the process creation flow was performed in user mode or kernel

mode, and by which routines, by looking at the stack of the event. To do this, double-

click on the RegOpenKey event mentioned and switch to the Stack tab. The following

screen shows the standard stack on a 32-bit Windows Vista machine.

368 Windows Internals, Fifth Edition

This stack shows that we have already reached the part of process creation per-

formed in kernel mode (through NtCreateUserProcess) and that the helper routine

PspAllocateProcess is responsible for this check.

Going down the list of events after the thread and process have been created, you will

notice three groups of events. The first is a simple check for application compatibility

flags, which will let the user-mode process creation code know if checks inside the

application compatibility database are required through the shim engine.

This check is followed by multiple reads to Side-By-Side, Manifest, and MUI/Language

keys, which are part of the assembly framework mentioned earlier. Finally, you may see

file I/O to one or more .sdb files, which are the application compatibility databases on

the system. This I/O is where additional checks are done to see if the shim engine needs

to be invoked for this application. Since Notepad is a well behaved Microsoft program,

it doesn’t require any shims.

The following screen shows the next series of events, which happen inside the Notepad

process itself. These are actions initiated by the user-mode thread startup wrapper

in kernel mode, which performs the actions described earlier. The first two are the

Notepad.exe and Ntdll.dll image load debug notification messages, which can only be

generated now that code is running inside Notepad’s process context and not the con-

text for the command prompt.

 Chapter 5 Processes, Threads, and Jobs 369

Next, the prefetcher kicks in, looking for a prefetch database file that has already been

generated for Notepad. (For more information on the prefetcher, see Chapter 9). On a

system where Notepad has already been run at least once, this database will exist, and

the prefetcher will begin executing the commands specified inside it. If this is the case,

scrolling down you will see multiple DLLs being read and queried. Unlike typical DLL

loading, which is done by the user-mode image loader by looking at the import tables

or when an application manually loads a DLL, these events are being generated by the

prefetcher, which is already aware of the libraries that Notepad will require. Typical

image loading of the DLLs required happens next, and you will see events similar to the

ones shown here.

These events are now being generated from code running inside user mode, which

was called once the kernel-mode wrapper function finished its work. Therefore, these

are the first events coming from LdrpInitializeProcess, which we mentioned is the inter-

nal system wrapper function for any new process, before the start address wrapper is

called. You can confirm this on your own by looking at the stack of these events; for

example, the kernel32.dll image load event, which is shown in the next screen.

370 Windows Internals, Fifth Edition

Further events are generated by this routine and its associated helper functions until

you finally reach events generated by the WinMain function inside Notepad, which is

where code under the developer’s control is now being executed. Describing in detail

all the events and user-mode components that come into play during process execu-

tion would fill up this entire chapter, so exploration of any further events is left as an

exercise for the reader.

Thread Internals

Now that we’ve dissected processes, let’s turn our attention to the structure of a thread.

Unless explicitly stated otherwise, you can assume that anything in this section applies to

both user-mode threads and kernel-mode system threads (which are described in Chapter 2).

Data Structures

At the operating-system level, a Windows thread is represented by an executive thread

(ETHREAD) block, which is illustrated in Figure 5-7. The ETHREAD block and the structures

it points to exist in the system address space, with the exception of the thread environment

block (TEB), which exists in the process address space (again, because user-mode compo-

nents need to have access to it).

 Chapter 5 Processes, Threads, and Jobs 371

In addition, the Windows subsystem process (Csrss) also maintains a parallel structure for

each thread created in a Windows subsystem application. Also, for threads that have called

a Windows subsystem USER or GDI function, the kernel-mode portion of the Windows sub-

system (Win32k.sys) maintains a per-thread data structure (called the W32THREAD structure)

that the ETHREAD block points to.

KTHREAD

Create and exit times

Process ID

Thread start address

Impersonation information

Timer information

Access token

EPROCESS

TEB

Pending I/O requests

ALPC message information

FIGURE 5-7 Structure of the executive thread block

Most of the fields illustrated in Figure 5-7 are self-explanatory. The first field is the kernel

thread (KTHREAD) block. Following that are the thread identification information, the process

identification information (including a pointer to the owning process so that its environment

information can be accessed), security information in the form of a pointer to the access

token and impersonation information, and finally, fields relating to ALPC messages and

pending I/O requests. As you can see in Table 5-9, some of these key fields are covered in

more detail elsewhere in this book. For more details on the internal structure of an ETHREAD

block, you can use the kernel debugger dt command to display the format of the structure.

TABLE 5-9 Key Contents of the Executive Thread Block

Field Name Value Taken from Image Header Additional Information

KTHREAD See Table 5-10.

Thread time Thread create and exit time information.

Process identification Process ID and pointer to EPROCESS block

of the process that the thread belongs to.

Start address Address of thread start routine.

Impersonation

information

Access token and impersonation level (if

the thread is impersonating a client).

Chapter 6

ALPC information Message ID that the thread is waiting for

and address of message.

Advanced local procedure

calls (ALPC) (Chapter 3)

I/O information List of pending I/O request packets (IRPs). I/O system (Chapter 7)

372 Windows Internals, Fifth Edition

Let’s take a closer look at two of the key thread data structures referred to in the preceding

text: the KTHREAD block and the TEB. The KTHREAD block (also called the TCB, or thread

control block) contains the information that the Windows kernel needs to access to perform

thread scheduling and synchronization on behalf of running threads. Its layout is illustrated

in Figure 5-8.

Dispatcher header

Total user time

Total kernel time

Thread-scheduling information

Trap frame

Synchronization information

Timer block and wait block

List of objects thread is waiting on

Thread-local storage array

Kernel stack information

System service table

List of pending APCs

TEB

FIGURE 5-8 Structure of the kernel thread block

The key fields of the KTHREAD block are described briefly in Table 5-10.

TABLE 5-10 Key Contents of the KTHREAD Block

Element Description Additional Reference

Dispatcher header Because the thread is an object that can

be waited on, it starts with a standard

kernel dispatcher object header.

Kernel dispatcher objects

(Chapter 3)

Execution time Total user and kernel CPU time.

Cycle time Total CPU cycle time. Thread scheduling

Pointer to kernel stack

information

Base and upper address of the kernel

stack.

Memory management

(Chapter 9)

Pointer to system service

table

Each thread starts out with this field ser-

vice table pointing to the main system

service table (KeServiceDescriptorTable).

When a thread first calls a Windows

GUI service, its system service table is

changed to one that includes the GDI

and USER services in Win32k.sys.

System service

dispatching (Chapter 3)

 Chapter 5 Processes, Threads, and Jobs 373

Element Description Additional Reference

Scheduling information Base and current priority, quantum tar-

get, quantum reset, affinity mask, ideal

processor, deferred processor, next pro-

cessor, scheduling state, freeze count,

suspend count, adjust increment and

adjust reason.

Thread scheduling

Wait blocks The thread block contains four built-in

wait blocks so that wait blocks don’t

have to be allocated and initialized each

time the thread waits for something.

(One wait block is dedicated to timers.)

Synchronization

(Chapter 3)

Wait information List of objects the thread is waiting for,

wait reason, IRQL at the time of wait,

result of the wait, and time at which the

thread entered the wait state.

Synchronization

(Chapter 3)

Mutant list List of mutant objects the thread owns. Synchronization

(Chapter 3)

APC queues List of pending user-mode and kernel-

mode APCs, alerted flag, and flags to

disable APCs.

Asynchronous procedure

call (APC) interrupts

(Chapter 3)

Timer block Built-in timer block (also a correspond-

ing wait block).

Suspend APC and

semaphore

Built-in APC and semaphore used when

suspending and resuming a thread.

Synchronization

(Chapter 3)

Queue Pointer to queue object that the thread

is associated with.

Synchronization

(Chapter 3)

Gate Pointer to gate object that the thread is

waiting on.

Synchronization

(Chapter 3)

Pointer to TEB Thread ID, TLS and FLS information,

PEB pointer, and Winsock, RPC,

GDI, OpenGL, and other user-mode

information.

374 Windows Internals, Fifth Edition

EXPERIMENT: Displaying ETHREAD and KTHREAD Structures

The ETHREAD and KTHREAD structures can be displayed with the dt command in the

kernel debugger. The following output shows the format of an ETHREAD on a 32-bit

system:

lkd> dt nt!_ethread

nt!_ETHREAD

 +0x000 Tcb : _KTHREAD

 +0x1e0 CreateTime : _LARGE_INTEGER

 +0x1e8 ExitTime : _LARGE_INTEGER

 +0x1e8 KeyedWaitChain : _LIST_ENTRY

 +0x1f0 ExitStatus : Int4B

 +0x1f0 OfsChain : Ptr32 Void

 +0x1f4 PostBlockList : _LIST_ENTRY

 +0x1f4 ForwardLinkShadow : Ptr32 Void

 +0x1f8 StartAddress : Ptr32 Void

 +0x1fc TerminationPort : Ptr32 _TERMINATION_PORT

 +0x1fc ReaperLink : Ptr32 _ETHREAD

 +0x1fc KeyedWaitValue : Ptr32 Void

 +0x1fc Win32StartParameter : Ptr32 Void

 +0x200 ActiveTimerListLock : Uint4B

 +0x204 ActiveTimerListHead : _LIST_ENTRY

 +0x20c Cid : _CLIENT_ID

 +0x214 KeyedWaitSemaphore : _KSEMAPHORE

 +0x214 AlpcWaitSemaphore : _KSEMAPHORE

 +0x228 ClientSecurity : _PS_CLIENT_SECURITY_CONTEXT

 +0x22c IrpList : _LIST_ENTRY

 +0x234 TopLevelIrp : Uint4B

 +0x238 DeviceToVerify : Ptr32 _DEVICE_OBJECT

 +0x23c RateControlApc : Ptr32 _PSP_RATE_APC

 +0x240 Win32StartAddress : Ptr32 Void

 +0x244 SparePtr0 : Ptr32 Void

 +0x248 ThreadListEntry : _LIST_ENTRY

 +0x250 RundownProtect : _EX_RUNDOWN_REF

 +0x254 ThreadLock : _EX_PUSH_LOCK

 +0x258 ReadClusterSize : Uint4B

 +0x25c MmLockOrdering : Int4B

 +0x260 CrossThreadFlags : Uint4B

 +0x260 Terminated : Pos 0, 1 Bit

 +0x260 ThreadInserted : Pos 1, 1 Bit

 +0x260 HideFromDebugger : Pos 2, 1 Bit

 +0x260 ActiveImpersonationInfo : Pos 3, 1 Bit

 +0x260 SystemThread : Pos 4, 1 Bit

 +0x260 HardErrorsAreDisabled : Pos 5, 1 Bit

 +0x260 BreakOnTermination : Pos 6, 1 Bit

 +0x260 SkipCreationMsg : Pos 7, 1 Bit

 +0x260 SkipTerminationMsg : Pos 8, 1 Bit

 +0x260 CopyTokenOnOpen : Pos 9, 1 Bit

 +0x260 ThreadIoPriority : Pos 10, 3 Bits

 +0x260 ThreadPagePriority : Pos 13, 3 Bits

 +0x260 RundownFail : Pos 16, 1 Bit

 +0x264 SameThreadPassiveFlags : Uint4B

 +0x264 ActiveExWorker : Pos 0, 1 Bit

 +0x264 ExWorkerCanWaitUser : Pos 1, 1 Bit

 Chapter 5 Processes, Threads, and Jobs 375

 +0x264 MemoryMaker : Pos 2, 1 Bit

 +0x264 ClonedThread : Pos 3, 1 Bit

 +0x264 KeyedEventInUse : Pos 4, 1 Bit

 +0x264 RateApcState : Pos 5, 2 Bits

 +0x264 SelfTerminate : Pos 7, 1 Bit

 +0x268 SameThreadApcFlags : Uint4B

 +0x268 Spare : Pos 0, 1 Bit

 +0x268 StartAddressInvalid : Pos 1, 1 Bit

 +0x268 EtwPageFaultCalloutActive : Pos 2, 1 Bit

 +0x268 OwnsProcessWorkingSetExclusive : Pos 3, 1 Bit

 +0x268 OwnsProcessWorkingSetShared : Pos 4, 1 Bit

 +0x268 OwnsSystemWorkingSetExclusive : Pos 5, 1 Bit

 +0x268 OwnsSystemWorkingSetShared : Pos 6, 1 Bit

 +0x268 OwnsSessionWorkingSetExclusive : Pos 7, 1 Bit

 +0x269 OwnsSessionWorkingSetShared : Pos 0, 1 Bit

 +0x269 OwnsProcessAddressSpaceExclusive : Pos 1, 1 Bit

 +0x269 OwnsProcessAddressSpaceShared : Pos 2, 1 Bit

 +0x269 SuppressSymbolLoad : Pos 3, 1 Bit

 +0x269 Prefetching : Pos 4, 1 Bit

 +0x269 OwnsDynamicMemoryShared : Pos 5, 1 Bit

 +0x269 OwnsChangeControlAreaExclusive : Pos 6, 1 Bit

 +0x269 OwnsChangeControlAreaShared : Pos 7, 1 Bit

 +0x26a PriorityRegionActive : Pos 0, 4 Bits

 +0x26c CacheManagerActive : UChar

 +0x26d DisablePageFaultClustering : UChar

 +0x26e ActiveFaultCount : UChar

 +0x270 AlpcMessageId : Uint4B

 +0x274 AlpcMessage : Ptr32 Void

 +0x274 AlpcReceiveAttributeSet : Uint4B

 +0x278 AlpcWaitListEntry : _LIST_ENTRY

 +0x280 CacheManagerCount : Uint4B

The KTHREAD can be displayed with a similar command:

lkd> dt nt!_kthread

nt!_KTHREAD

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 CycleTime : Uint8B

 +0x018 HighCycleTime : Uint4B

 +0x020 QuantumTarget : Uint8B

 +0x028 InitialStack : Ptr32 Void

 +0x02c StackLimit : Ptr32 Void

 +0x030 KernelStack : Ptr32 Void

 +0x034 ThreadLock : Uint4B

 +0x038 ApcState : _KAPC_STATE

 +0x038 ApcStateFill : [23] UChar

 +0x04f Priority : Char

 +0x050 NextProcessor : Uint2B

 +0x052 DeferredProcessor : Uint2B

 +0x054 ApcQueueLock : Uint4B

 +0x058 ContextSwitches : Uint4B

 +0x05c State : UChar

 +0x05d NpxState : UChar

 +0x05e WaitIrql : UChar

 +0x05f WaitMode : Char

 +0x060 WaitStatus : Int4B

376 Windows Internals, Fifth Edition

EXPERIMENT: Using the Kernel Debugger !thread Command

The kernel debugger !thread command dumps a subset of the information in the

thread data structures. Some key elements of the information the kernel debugger

displays can’t be displayed by any utility: internal structure addresses; priority details;

stack information; the pending I/O request list; and, for threads in a wait state, the list

of objects the thread is waiting for.

To display thread information, use either the !process command (which displays all the

thread blocks after displaying the process block) or the !thread command to dump a

specific thread. The output of the thread information, along with some annotations of

key fields, is shown here:

THREAD 83160f0 Cid: 9f.3d Teb: 7ffdc000

Win32Thread: e153d2c8

WAIT: (WrUserRequest) UserMode Non-Alertable

808e9d60 SynchronizationEvent

Not imersonating

Owning Process 81b44880

Wait Time (seconds)

Context Switch Count

UserTime

KernelTime

Start Address kernal32!BaseProcessStart (0x77e8f268)

Win32 Start Address 0x020d9d98

Stack Init f7818000 Current f7817bb0 Base f7818000 Limit f7812000 Call 0

Priority 14 BasePriority 9 PriorityDecrement 6 DecrementCount 13

953945

2697 LargeStack

0:00:00.0289

0:00:04.0644

ChildEBP RetAddr Args to Child

F7817bb0 8008f430 00000001 00000000 00000000 ntoskrnl!KiSwapThreadExit

F7817c50 de0119ec 00000001 00000000 00000000 ntoskrnl!KeWaitForSingleObject+0x2a0

F7817cc0 de0123f4 00000001 00000000 00000000 win32k!xxxSleepThread+0x23c

F7817d10 de01f2f0 00000001 00000000 00000000 win32k!xxxInternalGetMessage+0x504

F7817d80 800bab58 00000001 00000000 00000000 win32k!NtUserGetMessage+0x58

F7817df0 77d887d0 00000001 00000000 00000000 ntoskrnl!KiSystemServiceEndAddress+0x4

0012fef0 00000000 00000001 00000000 00000000 user32!GetMessageW+0x30

Address of
ETHREAD Thread ID

Address of thread
environment block

Priority
information

Address of user thread function

Actual thread
start address

Thread state

Objects being waited on

Address of EPROCESS for owning process

Stack dump

Kernal stack not resident.

 Chapter 5 Processes, Threads, and Jobs 377

EXPERIMENT: Viewing Thread Information

The following output is the detailed display of a process produced by using the Tlist

utility in the Debugging Tools for Windows. Notice that the thread list shows the

“Win32StartAddr.” This is the address passed to the CreateThread function by the appli-

cation. All the other utilities, except Process Explorer, that show the thread start address

show the actual start address (a function in Ntdll.dll), not the application-specified start

address.

C:\> tlist winword

2400 WINWORD.EXE WinInt5E_Chapter06.doc [Compatibility Mode] - Microsoft Word

 CWD: C:\Users\Alex Ionescu\Documents\

 CmdLine: "C:\Program Files\Microsoft Office\Office12\WINWORD.EXE" /n /dde

 VirtualSize: 310656 KB PeakVirtualSize: 343552 KB

 WorkingSetSize: 91548 KB PeakWorkingSetSize:100788 KB

 NumberOfThreads: 6

 2456 Win32StartAddr:0x2f7f10cc LastErr:0x00000000 State:Waiting

 1452 Win32StartAddr:0x6882f519 LastErr:0x00000000 State:Waiting

 2464 Win32StartAddr:0x6b603850 LastErr:0x00000000 State:Waiting

 3036 Win32StartAddr:0x690dc17f LastErr:0x00000002 State:Waiting

 3932 Win32StartAddr:0x775cac65 LastErr:0x00000102 State:Waiting

 3140 Win32StartAddr:0x687d6ffd LastErr:0x000003f0 State:Waiting

 12.0.4518.1014 shp 0x2F7F0000 C:\Program Files\Microsoft Office\Office12\

 WINWORD.EXE

 6.0.6000.16386 shp 0x777D0000 C:\Windows\system32\Ntdll.dll

 6.0.6000.16386 shp 0x764C0000 C:\Windows\system32\kernel32.dll

 § list of DLLs loaded in process

The TEB, illustrated in Figure 5-9, is the only data structure explained in this section that

exists in the process address space (as opposed to the system space).

The TEB stores context information for the image loader and various Windows DLLs. Because

these components run in user mode, they need a data structure writable from user mode.

That’s why this structure exists in the process address space instead of in the system space,

where it would be writable only from kernel mode. You can find the address of the TEB with

the kernel debugger !thread command.

378 Windows Internals, Fifth Edition

Exception list

Stack base

Stack limit

Thread ID

Active RPC handle

 value

Current locale

User32 client information

Subsystem thread information block (TIB)

Fiber information

Winsock data

Count of owned critical sections

OpenGL information

TLS array

GDI32 information

PEB

FIGURE 5-9 Fields of the thread environment block

EXPERIMENT: Examining the TEB

You can dump the TEB structure with the !teb command in the kernel debugger. The

output looks like this:

kd> !teb

TEB at 7ffde000

 ExceptionList: 019e8e44

 StackBase: 019f0000

 StackLimit: 019db000

 SubSystemTib: 00000000

 FiberData: 00001e00

 ArbitraryUserPointer: 00000000

 Self: 7ffde000

 EnvironmentPointer: 00000000

 ClientId: 00000bcc . 00000864

 RpcHandle: 00000000

 Tls Storage: 7ffde02c

 PEB Address: 7ffd9000

 LastErrorValue: 0

 LastStatusValue: c0000139

 Count Owned Locks: 0

 HardErrorMode: 0

 Chapter 5 Processes, Threads, and Jobs 379

Kernel Variables

As with processes, a number of Windows kernel variables control how threads run. Table 5-11

shows the kernel-mode kernel variables that relate to threads.

TABLE 5-11 Thread-Related Kernel Variables

Variable Type Description

PspCreateThreadNotifyRoutine Array of executive

callback objects

Array of callback objects describing

the routines to be called on thread

creation and deletion (maximum of 64)

PspCreateThreadNotifyRoutineCount 32-bit integer Count of registered thread-

 notification routines

Performance Counters

Most of the key information in the thread data structures is exported as performance coun-

ters, which are listed in Table 5-12. You can extract much information about the internals of a

thread just by using the Reliability and Performance Monitor in Windows.

TABLE 5-12 Thread-Related Performance Counters

Object: Counter Function

Process: Priority Base Returns the current base priority of the process. This is the start-

ing priority for threads created within this process.

Thread: % Privileged Time Describes the percentage of time that the thread has run in kernel

mode during a specified interval.

Thread: % Processor Time Describes the percentage of CPU time that the thread has used

during a specified interval. This count is the sum of % Privileged

Time and % User Time.

Thread: % User Time Describes the percentage of time that the thread has run in user

mode during a specified interval.

Thread: Context Switches/Sec Returns the number of context switches per second that the sys-

tem is executing.

Thread: Elapsed Time Returns the amount of CPU time (in seconds) that the thread has

consumed.

Thread: ID Process Returns the process ID of the thread’s process.

Thread: ID Thread Returns the thread’s thread ID. This ID is valid only during the

thread’s lifetime because thread IDs are reused.

Thread: Priority Base Returns the thread’s current base priority. This number might be

different from the thread’s starting base priority.

Thread: Priority Current Returns the thread’s current dynamic priority.

Thread: Start Address Returns the thread’s starting virtual address (Note: This address

will be the same for most threads.)

380 Windows Internals, Fifth Edition

Object: Counter Function

Thread: Thread State Returns a value from 0 through 7 relating to the current state of

the thread.

Thread: Thread Wait Reason Returns a value from 0 through 19 relating to the reason why the

thread is in a wait state.

Relevant Functions

Table 5-13 shows the Windows functions for creating and manipulating threads. This table

doesn’t include functions that have to do with thread scheduling and priorities—those are

included in the section “Thread Scheduling” later in this chapter.

TABLE 5-13 Windows Thread Functions

Function Description

CreateThread Creates a new thread

CreateRemoteThread Creates a thread in another process

OpenThread Opens an existing thread

ExitThread Ends execution of a thread normally

TerminateThread Terminates a thread

IsThreadAFiber Returns whether the current thread is a fiber

GetExitCodeThread Gets another thread’s exit code

GetThreadTimes Returns timing information for a thread

QueryThreadCycleTime Returns CPU clock cycle information for a thread

GetCurrentThread Returns a pseudo handle for the current thread

GetCurrentProcessId Returns the thread ID of the current thread

GetThreadId Returns the thread ID of the specified thread

Get/SetThreadContext Returns or changes a thread’s CPU registers

GetThreadSelectorEntry Returns another thread’s descriptor table entry

(applies only to x86 systems)

Birth of a Thread

A thread’s life cycle starts when a program creates a new thread. The request filters down to

the Windows executive, where the process manager allocates space for a thread object and

calls the kernel to initialize the kernel thread block. The steps in the following list are taken

inside the Windows CreateThread function in Kernel32.dll to create a Windows thread.

 1. CreateThread converts the Windows API parameters to native flags and builds a native

structure describing object parameters (OBJECT_ATTRIBUTES). See Chapter 3 for more

information.

 Chapter 5 Processes, Threads, and Jobs 381

 2. CreateThread builds an attribute list with two entries: client ID and TEB address. This

allows CreateThread to receive those values once the thread has been created. (For

more information on attribute lists, see the section “Flow of CreateProcess” earlier in

this chapter.)

 3. NtCreateThreadEx is called to create the user-mode context and probe and capture

the attribute list. It then calls PspCreateThread to create a suspended executive thread

object. For a description of the steps performed by this function, see the descriptions of

Stage 3 and Stage 5 in the section “Flow of CreateProcess.”

 4. CreateThread allocates an activation stack for the thread used by side-by-side assembly

support. It then queries the activation stack to see if it requires activation, and does so

if needed. The activation stack pointer is saved in the new thread’s TEB.

 5. CreateThread notifies the Windows subsystem about the new thread, and the subsys-

tem does some setup work for the new thread.

 6. The thread handle and the thread ID (generated during step 3) are returned to the

caller.

 7. Unless the caller created the thread with the CREATE_SUSPENDED flag set, the thread

is now resumed so that it can be scheduled for execution. When the thread starts run-

ning, it executes the steps described in the earlier section “Stage 7: Performing Process

Initialization in the Context of the New Process” before calling the actual user’s speci-

fied start address.

Examining Thread Activity

Examining thread activity is especially important if you are trying to determine why a process

that is hosting multiple services is running (such as Svchost.exe, Dllhost.exe, or Lsass.exe) or

why a process is hung.

There are several tools that expose various elements of the state of Windows threads:

WinDbg (in user-process attach and kernel debugging mode), the Reliability and Perfor-

mance Monitor, and Process Explorer. (The tools that show thread-scheduling information

are listed in the section “Thread Scheduling.”)

To view the threads in a process with Process Explorer, select a process and open the process

properties (double-click on the process or click on the Process, Properties menu item). Then

click on the Threads tab. This tab shows a list of the threads in the process and three columns

of information. For each thread it shows the percentage of CPU consumed (based on the

refresh interval configured), the number of context switches to the thread, and the thread

start address. You can sort by any of these three columns.

382 Windows Internals, Fifth Edition

New threads that are created are highlighted in green, and threads that exit are highlighted

in red. (The highlight duration can be configured with the Options, Configure Highlighting

menu item.) This might be helpful to discover unnecessary thread creation occurring in a

process. (In general, threads should be created at process startup, not every time a request is

processed inside a process.)

As you select each thread in the list, Process Explorer displays the thread ID, start time, state,

CPU time counters, number of context switches, and the base and current priority. There is a

Kill button, which will terminate an individual thread, but this should be used with extreme

care.

The best way to measure actual CPU activity with Process Explorer is to add the clock cycle

delta column, which uses the clock cycle counter designed for thread run-time account-

ing (as described later in this chapter). Because many threads run for such a short amount

of time that they are seldom (if ever) the currently running thread when the clock interval

timer interrupt occurs, they are not charged for much of their CPU time. The total number of

clock cycles represents the actual number of processor cycles that each thread in the process

accrued. It is independent of the clock interval timer’s resolution because the count is main-

tained internally by the processor at each cycle and updated by Windows at each interrupt

entry (a final accumulation is done before a context switch).

The thread start address is displayed in the form “module!function”, where module is the

name of the .exe or .dll. The function name relies on access to symbol files for the module.

(See “Experiment: Viewing Process Details with Process Explorer” in Chapter 1.) If you are

unsure what the module is, click the Module button. This opens an Explorer file properties

window for the module containing the thread’s start address (for example, the .exe or .dll).

Note For threads created by the Windows CreateThread function, Process Explorer displays

the function passed to CreateThread, not the actual thread start function. That is because all

Windows threads start at a common thread startup wrapper function (RtlUserThreadStart in

Ntdll.dll). If Process Explorer showed the actual start address, most threads in processes would

appear to have started at the same address, which would not be helpful in trying to understand

what code the thread was executing. However, if Process Explorer can’t query the user-defined

startup address (such as in the case of a protected process), it will show the wrapper function, so

you will see all threads starting at RtlUserThreadStart.

However, the thread start address displayed might not be enough information to pinpoint

what the thread is doing and which component within the process is responsible for the CPU

consumed by the thread. This is especially true if the thread start address is a generic startup

function (for example, if the function name does not indicate what the thread is actually

doing). In this case, examining the thread stack might answer the question. To view the stack

for a thread, double-click on the thread of interest (or select it and click the Stack button).

 Chapter 5 Processes, Threads, and Jobs 383

Process Explorer displays the thread’s stack (both user and kernel, if the thread was in kernel

mode).

Note While the user-mode debuggers (WinDbg, Ntsd, and Cdb) permit you to attach to a

process and display the user stack for a thread, Process Explorer shows both the user and kernel

stack in one easy click of a button. You can also examine user and kernel thread stacks using

WinDbg in local kernel debugging mode.

Viewing the thread stack can also help you determine why a process is hung. As an example,

on one system, Microsoft Office PowerPoint was hanging for one minute on startup. To

determine why it was hung, after starting PowerPoint, Process Explorer was used to examine

the thread stack of the one thread in the process. The result is shown in Figure 5-10.

FIGURE 5-10 Hung thread stack in PowerPoint

This thread stack shows that PowerPoint (line 10) called a function in Mso.dll (the central

Microsoft Office DLL), which called the OpenPrinterW function in Winspool.drv (a DLL used to

connect to printers). Winspool.drv then dispatched to a function OpenPrinterRPC, which then

called a function in the RPC runtime DLL, indicating it was sending the request to a remote

printer. So, without having to understand the internals of PowerPoint, the module and func-

tion names displayed on the thread stack indicate that the thread was waiting to connect to a

network printer. On this particular system, there was a network printer that was not respond-

ing, which explained the delay starting PowerPoint. (Microsoft Office applications connect to

all configured printers at process startup.) The connection to that printer was deleted from

the user’s system, and the problem went away.

Finally, when looking at 32-bit applications running on 64-bit systems as a Wow64 process

(see Chapter 3 for more information on Wow64), Process Explorer shows both the 32-bit and

64-bit stack for threads. Because at the time of the system call proper, the thread has been

switched to a 64-bit stack and context, simply looking at the thread’s 64-bit stack would

reveal only half the story—the 64-bit part of the thread, with Wow64’s thunking code. So,

when examining Wow64 processes, be sure to take into account both the 32-bit and 64-bit

stacks. An example of a Wow64 thread inside Microsoft Office Word 2007 is shown in Figure

5-11. The stack frames highlighted in the box are the 32-bit stack frames from the 32-bit

stack.

384 Windows Internals, Fifth Edition

FIGURE 5-11 Example Wow64 stack

Limitations on Protected Process Threads

As we discussed in the process internals section, protected processes have several limitations

in terms of which access rights will be granted, even to the users with the highest privileges

on the system. These limitations also apply to threads inside such a process. This ensures

that the actual code running inside the protected process cannot be hijacked or otherwise

affected through standard Windows functions, which require the access rights in Table 5-14.

TABLE 5-14 Thread Access Rights Denied for Threads Inside a Protected Process

Object: Access Mask Function

Thread: THREAD_ALL_ACCESS Disables full access to a thread inside a protected

process.

Thread: THREAD_DIRECT_IMPERSONATION Disables impersonating a thread inside a protected

process.

Thread: THREAD_GET_CONTEXT, THREAD_

SET_CONTEXT

Disables accessing and/or modifying the CPU context

(registers and stack) of a thread inside a protected

process.

Thread: THREAD_QUERY_INFORMATION Disables querying all information on a thread inside

a protected process. However, a new access right was

added, THREAD_QUERY_LIMITED_INFORMATION,

that grants limited access to information on the

thread.

 Chapter 5 Processes, Threads, and Jobs 385

Object: Access Mask Function

Thread: THREAD_SET_INFORMATION Disables setting all information on a thread inside a

protected process. However, a new access right was

added, THREAD_SET_LIMITED_INFORMATION, that

grants limited access to modifying information on

the thread.

Thread: THREAD_SET_THREAD_TOKEN Disables setting an impersonation token for a thread

inside a protected process.

Thread: THREAD_TERMINATE Disables terminating a thread inside a protected

process. Note that terminating all threads atomically

through process termination is allowed.

EXPERIMENT: Viewing Protected Process Thread Information

In the previous section, we took a look at how Process Explorer can be helpful in exam-

ining thread activity to determine the cause of potential system or application issues.

This time, we’ll use Process Explorer to look at a protected process and see how the dif-

ferent access rights being denied affect its ability and usefulness on such a process.

Find the Audiodg.exe service inside the process list. This is a process responsible for

much of the core work behind the user-mode audio stack in Windows Vista, and it

requires protection to ensure that high-definition decrypted audio content does not

leak out to untrusted sources. Bring up the process properties view and take a look

at the Image tab. Notice how the numbers for WS Private, WS Shareable, and WS

Shared are 0, although the total Working Set is still displayed. This is an example of

the THREAD_QUERY_INFORMATION versus THREAD_QUERY_LIMITED_INFORMATION

rights.

More importantly, take a look at the Threads tab. As you can see here, Process Explorer

is unable to show the Win32 thread start address and instead displays the standard

thread start wrapper inside Ntdll.dll. If you try clicking on the Stack button, you’ll get an

error, because Process Explorer needs to read the virtual memory inside the protected

process, which it can’t do.

386 Windows Internals, Fifth Edition

Finally, note that although the Base and Dynamic priorities are shown, the I/O and

Memory priorities are not, another example of the limited versus full query information

access right. As you try to kill a thread inside Audiodg.exe, notice yet another access

denied error: recall the lack of THREAD_TERMINATE access shown earlier in Table 5-14.

Worker Factories (Thread Pools)

Worker factories refer to the internal mechanism used to implement user-mode thread pools.

Prior to Windows Vista, the thread pool routines were completely implemented in user mode

inside the Ntdll.dll library, and the Windows API provided various routines to call into the rel-

evant routines, which provided waitable timers, wait callbacks, and automatic thread creation

and deletion depending on the amount of work being done.

Note Information on the new thread pool API is available on MSDN at http://msdn2.micro-
soft.com/en-us/library/ms686760.aspx. It includes information on the APIs introduced and

the APIs retired, as well as important differences in certain details of the way the two APIs are

implemented.

 Chapter 5 Processes, Threads, and Jobs 387

In Windows Vista, the thread pool implementation in user mode was completely re-archi-

tected, and part of the management functionality has been moved to kernel mode in order

to improve efficiency and performance and minimize complexity. The original thread pool

implementation required the user-mode code inside Ntdll.dll to remain aware of how many

threads were currently active as worker threads, and to enlarge this number in periods of

high demand.

Because querying the information necessary to make this decision, as well as the work to cre-

ate the threads, took place in user mode, several system calls were required that could have

been avoided if these operations were performed in kernel mode. Moving this code into

kernel mode means fewer transitions between user and kernel mode, and it allows Ntdll.dll

to manage the thread pool itself and not the system mechanisms behind it. It also provides

other benefits, such as the ability to remotely create a thread pool in a process other than the

calling process (although possible in user mode, it would be very complex given the necessity

of using APIs to access the remote process’s address space).

The functionality in Windows Vista is introduced by a new object manager type called

TpWorkerFactory, as well as four new native system calls for managing the factory and

its workers—NtCreateWorkerFactory, NtWorkerFactoryWorkerReady, NtReleaseWorker-
Fac tory Worker, NtShutdownWorkerFactory—two new query/set native calls (NtQuery-
Infor ma tion WorkerFactory and NtSetInformationWorkerFactory), and a new wait call,

NtWaitFor WorkViaWorkerFactory.

Just like other native system calls, these calls provide user mode with a handle to the

TpWorker Factory object, which contains information such as the name and object attributes,

the desired access mask, and a security descriptor. Unlike other system calls wrapped by

the Windows API, however, thread pool management is handled by Ntdll.dll’s native code,

which means that developers work with an opaque descriptor (a TP_WORK pointer) owned by

Ntdll.dll, in which the actual handle is stored.

As its name suggests, the worker factory implementation is responsible for allocating worker

threads (and calling the given user-mode worker thread entry point), maintaining a minimum

and maximum thread count (allowing for either permanent worker pools or totally dynamic

pools), as well as other accounting information. This enables operations such as shutting

down the thread pool to be performed with a single call to the kernel, because the kernel

has been the only component responsible for thread creation and termination.

Because the kernel dynamically creates new threads as requested, this also increases the scal-

ability of applications using the new thread pool implementation. Developers have always

been able to take advantage of as many threads as possible (based on the number of proces-

sors on the system) through the old implementation, but through support for dynamic pro-

cessors in Windows Vista (see the section on this topic later in this chapter), it’s now possible

for applications using thread pools to automatically take advantage of new processors added

at run time.

388 Windows Internals, Fifth Edition

It’s important to note that the new worker factory support is merely a wrapper to manage

mundane tasks that would otherwise have to be performed in user mode (at a loss of per-

formance). Many of the improvements in the new thread pool code are the result of changes

in the Ntdll.dll side of this architecture. Also, it is not the worker factory code that provides

the scalability, wait internals, and efficiency of work processing. Instead, it is a much older

component of Windows that we have already discussed—I/O completion ports, or more cor-

rectly, kernel queues (KQUEUE; see Chapter 7 for more information).

In fact, when creating a worker factory, an I/O completion port must have already been cre-

ated by user mode, and the handle needs to be passed on. It is through this I/O completion

port that the user-mode implementation will queue work and also wait for work—but by

calling the worker factory system calls instead of the I/O completion port APIs. Internally,

however, the “release” worker factory call (which queues work) is a wrapper around

IoSetIoCompletion, which increases pending work, while the “wait” call is a wrapper around

IoRemoveIoCompletion. Both these routines call into the kernel queue implementation.

Therefore, the job of the worker factory code is to manage either a persistent, static, or

dynamic thread pool; wrap the I/O completion port model into interfaces that try to prevent

stalled worker queues by automatically creating dynamic threads; and to simplify global

cleanup and termination operations during a factory shutdown request (as well as to easily

block new requests against the factory in such a scenario).

Unfortunately, the data structures used by the worker factory implementation are not in the

public symbols, but it is still possible to look at some worker pools, as we’ll show in the next

experiment.

EXPERIMENT: Looking at Thread Pools

Because of the more efficient and simpler thread pool implementation in Windows

Vista, many core system components and applications were updated to make use of it.

One of the ways to identify which processes are using a worker factory is to look at the

handle list in Process Explorer. Follow these steps to look at some details behind them:

 1. Run Process Explorer and select Show Unnamed Handles And Mappings from

the View menu. Unfortunately, worker factories aren’t named by Ntdll.dll, so you

need to take this step in order to see the handles.

 2. Select Lsm.exe from the list of processes, and look at the handle table. Make sure

that the lower pane is shown (View, Show Lower Pane) and is displaying handle

table mode (View, Lower Pane View, Handles).

 3. Right-click on the lower pane columns, and then click on Select Columns. Make

sure that the Type column is selected to be shown.

 Chapter 5 Processes, Threads, and Jobs 389

 4. Now scroll down the handles, looking at the Type column, until you find a handle

of type TpWorkerFactory. You should see something like this:

Notice how the TpWorkerFactory handle is immediately preceded by an

IoCompletion handle. As was described previously, this occurs because before cre-

ating a worker factory, a handle to an I/O completion port on which work will be

sent must be created.

 5. Now double-click Lsm.exe in the list of processes, and go to the Threads tab. You

should see something similar to the image here:

390 Windows Internals, Fifth Edition

On this system (with two processors), the worker factory has created six worker

threads at the request of Lsm.exe (processes can define a minimum and maxi-

mum number of threads) and based on its usage and the count of processors on

the machine. These threads are identified as TppWorkerThread, which is Ntdll.dll’s

worker entry point when calling the worker factory system calls.

 6. Ntdll.dll is responsible for its own internal accounting inside the worker thread

wrapper (TppWorkerThread) before calling the worker callback that the applica-

tion has registered. By looking at the Wait reason in the State information for

each thread, you can get a rough idea of what each worker thread may be doing.

Double-click on one of the threads inside an LPC wait to look at its stack. Here’s

an example:

This specific worker thread is being used by Lsm.exe for LPC communication.

Because the local session manager needs to communicate with other compo-

nents such as Smss and Csrss through LPC, it makes sense that it would want a

number of its threads to be busy replying and waiting for LPC messages (the

more threads doing this, the less stalling on the LPC pipeline).

If you look at other worker threads, you’ll see some are waiting for objects such as

events. A process can have multiple thread pools, and each thread pool can have a

variety of threads doing completely unrelated tasks. It’s up to the developer to assign

work and to call the thread pool APIs to register this work through Ntdll.dll.

 Chapter 5 Processes, Threads, and Jobs 391

Thread Scheduling

This section describes the Windows scheduling policies and algorithms. The first subsection

provides a condensed description of how scheduling works on Windows and a definition

of key terms. Then Windows priority levels are described from both the Windows API and

the Windows kernel points of view. After a review of the relevant Windows functions and

Windows utilities and tools that relate to scheduling, the detailed data structures and algo-

rithms that make up the Windows scheduling system are presented, with uniprocessor sys-

tems examined first and then multiprocessor systems.

Overview of Windows Scheduling

Windows implements a priority-driven, preemptive scheduling system—the highest-priority

runnable (ready) thread always runs, with the caveat that the thread chosen to run might be

limited by the processors on which the thread is allowed to run, a phenomenon called pro-
cessor affinity. By default, threads can run on any available processor, but you can alter pro-

cessor affinity by using one of the Windows scheduling functions listed in Table 5-15 (shown

later in the chapter) or by setting an affinity mask in the image header.

EXPERIMENT: Viewing Ready Threads

You can view the list of ready threads with the kernel debugger !ready command. This

command displays the thread or list of threads that are ready to run at each priority

level. In the following example, generated on a 32-bit machine with a dual-core proces-

sor, five threads are ready to run at priority 8 on the first processor, and three threads

at priority 10, two threads at priority 9, and six threads at priority 8 are ready to run on

the second processor. Determining which of these threads get to run on their respec-

tive processor is a complex result at the end of several algorithms that the scheduler

uses. We will cover this topic later in this section.

kd> !ready

Processor 0: Ready Threads at priority 8

 THREAD 857d9030 Cid 0ec8.0e30 Teb: 7ffdd000 Win32Thread: 00000000 READY

 THREAD 855c8300 Cid 0ec8.0eb0 Teb: 7ff9c000 Win32Thread: 00000000 READY

 THREAD 8576c030 Cid 0ec8.0c9c Teb: 7ffa8000 Win32Thread: 00000000 READY

 THREAD 85a8a7f0 Cid 0ec8.0d3c Teb: 7ff97000 Win32Thread: 00000000 READY

 THREAD 87d34488 Cid 0c48.04a0 Teb: 7ffde000 Win32Thread: 00000000 READY

Processor 1: Ready Threads at priority 10

 THREAD 857c0030 Cid 04c8.0378 Teb: 7ffdf000 Win32Thread: fef7f8c0 READY

 THREAD 856cc8e8 Cid 0e84.0a70 Teb: 7ffdb000 Win32Thread: f98fb4c0 READY

 THREAD 85c41c68 Cid 0e84.00ac Teb: 7ffde000 Win32Thread: ff460668 READY

Processor 1: Ready Threads at priority 9

 THREAD 87fc86f0 Cid 0ec8.04c0 Teb: 7ffd3000 Win32Thread: 00000000 READY

 THREAD 88696700 Cid 0ec8.0ce8 Teb: 7ffa0000 Win32Thread: 00000000 READY

392 Windows Internals, Fifth Edition

Processor 1: Ready Threads at priority 8

 THREAD 856e5520 Cid 0ec8.0228 Teb: 7ff98000 Win32Thread: 00000000 READY

 THREAD 85609d78 Cid 0ec8.09b0 Teb: 7ffd9000 Win32Thread: 00000000 READY

 THREAD 85fdeb78 Cid 0ec8.0218 Teb: 7ff72000 Win32Thread: 00000000 READY

 THREAD 86086278 Cid 0ec8.0cc8 Teb: 7ff8d000 Win32Thread: 00000000 READY

 THREAD 8816f7f0 Cid 0ec8.0b60 Teb: 7ffd5000 Win32Thread: 00000000 READY

 THREAD 87710d78 Cid 0004.01b4 Teb: 00000000 Win32Thread: 00000000 READY

When a thread is selected to run, it runs for an amount of time called a quantum. A quantum

is the length of time a thread is allowed to run before another thread at the same priority

level (or higher, which can occur on a multiprocessor system) is given a turn to run. Quantum

values can vary from system to system and process to process for any of three reasons: sys-

tem configuration settings (long or short quantums), foreground/background status of the

process, or use of the job object to alter the quantum. (Quantums are described in more

detail in the “Quantum” section later in the chapter.) A thread might not get to complete

its quantum, however. Because Windows implements a preemptive scheduler, if another

thread with a higher priority becomes ready to run, the currently running thread might be

preempted before finishing its time slice. In fact, a thread can be selected to run next and be

preempted before even beginning its quantum!

The Windows scheduling code is implemented in the kernel. There’s no single “scheduler”

module or routine, however—the code is spread throughout the kernel in which scheduling-

related events occur. The routines that perform these duties are collectively called the ker-

nel’s dispatcher. The following events might require thread dispatching:

A thread becomes ready to execute—for example, a thread has been newly created or

has just been released from the wait state.

A thread leaves the running state because its time quantum ends, it terminates, it yields

execution, or it enters a wait state.

A thread’s priority changes, either because of a system service call or because Windows

itself changes the priority value.

A thread’s processor affinity changes so that it will no longer run on the processor on

which it was running.

At each of these junctions, Windows must determine which thread should run next. When

Windows selects a new thread to run, it performs a context switch to it. A context switch is

the procedure of saving the volatile machine state associated with a running thread, loading

another thread’s volatile state, and starting the new thread’s execution.

As already noted, Windows schedules at the thread granularity. This approach makes sense

when you consider that processes don’t run but only provide resources and a context in

 Chapter 5 Processes, Threads, and Jobs 393

which their threads run. Because scheduling decisions are made strictly on a thread basis, no

consideration is given to what process the thread belongs to. For example, if process A has 10

runnable threads, process B has 2 runnable threads, and all 12 threads are at the same prior-

ity, each thread would theoretically receive one-twelfth of the CPU time—Windows wouldn’t

give 50 percent of the CPU to process A and 50 percent to process B.

Priority Levels

To understand the thread-scheduling algorithms, you must first understand the priority lev-

els that Windows uses. As illustrated in Figure 5-12, internally Windows uses 32 priority levels,

ranging from 0 through 31. These values divide up as follows:

Sixteen real-time levels (16 through 31)

Fifteen variable levels (1 through 15)

One system level (0), reserved for the zero page thread

FIGURE 5-12 Thread priority levels

Thread priority levels are assigned from two different perspectives: those of the Windows API

and those of the Windows kernel. The Windows API first organizes processes by the priority

class to which they are assigned at creation (Real-time, High, Above Normal, Normal, Below

Normal, and Idle) and then by the relative priority of the individual threads within those pro-

cesses (Time-critical, Highest, Above-normal, Normal, Below-normal, Lowest, and Idle).

In the Windows API, each thread has a base priority that is a function of its process priority

class and its relative thread priority. The mapping from Windows priority to internal Windows

numeric priority is shown in Figure 5-13.

394 Windows Internals, Fifth Edition

Real-time
time critical

Real-time idle
Dynamic time

critical

Dynamic idle

Used for zero page thread—not available to Win32 applications

Idle

Below
Normal

Normal

Above
Normal

High

Real-time

31

24

16

15

13

10

8

6

4

0

1

FIGURE 5-13 Mapping of Windows kernel priorities to the Windows API

Whereas a process has only a single base priority value, each thread has two priority values:

current and base. Scheduling decisions are made based on the current priority. As explained

in the following section on priority boosting, the system under certain circumstances

increases the priority of threads in the dynamic range (1 through 15) for brief periods.

Windows never adjusts the priority of threads in the real-time range (16 through 31), so they

always have the same base and current priority.

A thread’s initial base priority is inherited from the process base priority. A process, by

default, inherits its base priority from the process that created it. This behavior can be over-

ridden on the CreateProcess function or by using the command-line start command. A pro-

cess priority can also be changed after being created by using the SetPriorityClass function or

 Chapter 5 Processes, Threads, and Jobs 395

various tools that expose that function, such as Task Manager and Process Explorer (by right-

clicking on the process and choosing a new priority class). For example, you can lower the

priority of a CPU-intensive process so that it does not interfere with normal system activities.

Changing the priority of a process changes the thread priorities up or down, but their relative

settings remain the same. It usually doesn’t make sense, however, to change individual thread

priorities within a process, because unless you wrote the program or have the source code,

you don’t really know what the individual threads are doing, and changing their relative

importance might cause the program not to behave in the intended fashion.

Normally, the process base priority (and therefore the starting thread base priority) will

default to the value at the middle of each process priority range (24, 13, 10, 8, 6, or 4).

However, some Windows system processes (such as the Session Manager, service controller,

and local security authentication server) have a base process priority slightly higher than the

default for the Normal class (8). This higher default value ensures that the threads in these

processes will all start at a higher priority than the default value of 8. These system processes

use an internal system call (NtSetInformationProcess) to set their process base priority to a

numeric value other than the normal default starting base priority.

Windows Scheduling APIs

The Windows API functions that relate to thread scheduling are listed in Table 5-15. (For

more information, see the Windows API reference documentation.)

TABLE 5-15 Scheduling-Related APIs and Their Functions

API Function

Suspend/ResumeThread Suspends or resumes a paused thread from execution.

Get/SetPriorityClass Returns or sets a process’s priority class (base priority).

Get/SetThreadPriority Returns or sets a thread’s priority (relative to its process base

priority).

Get/SetProcessAffinityMask Returns or sets a process’s affinity mask.

SetThreadAffinityMask Sets a thread’s affinity mask (must be a subset of the process’s

affinity mask) for a particular set of processors, restricting it to

running on those processors.

SetInformationJobObject Sets attributes for a job; some of the attributes affect schedul-

ing, such as affinity and priority. (See the “Job Objects” section

later in the chapter for a description of the job object.)

GetLogicalProcessorInformation Returns details about processor hardware configuration (for

hyperthreaded and NUMA systems).

Get/SetThreadPriorityBoost Returns or sets the ability for Windows to boost the priority of

a thread temporarily. (This ability applies only to threads in the

dynamic range.)

SetThreadIdealProcessor Establishes a preferred processor for a particular thread, but

doesn’t restrict the thread to that processor.

396 Windows Internals, Fifth Edition

API Function

Get/SetProcessPriorityBoost Returns or sets the default priority boost control state of the

current process. (This function is used to set the thread priority

boost control state when a thread is created.)

WaitForSingle/MultipleObject(s) Puts the current thread into a wait state until the specified

object(s) is/are satisfied, or until the specified time interval (fig-

ured in milliseconds [msec]) expires, if given.

SwitchToThread Yields execution to another thread (at priority 1 or higher) that

is ready to run on the current processor.

Sleep Puts the current thread into a wait state for a specified time in-

terval (figured in milliseconds [msec]). A zero value relinquishes

the rest of the thread’s quantum.

SleepEx Causes the current thread to go into a wait state until either an

I/O completion callback is completed, an APC is queued to the

thread, or the specified time interval ends.

Relevant Tools

You can change (and view) the base process priority with Task Manager and Process Explorer.

You can kill individual threads in a process with Process Explorer (which should be done, of

course, with extreme care).

You can view individual thread priorities with the Reliability and Performance Monitor,

Process Explorer, or WinDbg. While it might be useful to increase or lower the priority of a

process, it typically does not make sense to adjust individual thread priorities within a pro-

cess because only a person who thoroughly understands the program (in other words, typi-

cally only the developer himself) would understand the relative importance of the threads

within the process.

The only way to specify a starting priority class for a process is with the start command in the

Windows command prompt. If you want to have a program start every time with a specific

priority, you can define a shortcut to use the start command by beginning the command

with cmd /c. This runs the command prompt, executes the command on the command line,

and terminates the command prompt. For example, to run Notepad in the low-process prior-

ity, the shortcut would be cmd /c start /low Notepad.exe.

 Chapter 5 Processes, Threads, and Jobs 397

EXPERIMENT: Examining and Specifying Process and

Thread Priorities

Try the following experiment:

 1. From an elevated command prompt, type start /realtime notepad. Notepad

should open.

 2. Run Process Explorer and select Notepad.exe from the list of processes. Double-

click on Notepad.exe to show the process properties window, and then click on

the Threads tab, as shown here. Notice that the dynamic priority of the thread in

Notepad is 24. This matches the real-time value shown in this image:

 3. Task Manager can show you similar information. Press Ctrl+Shift+Esc to start Task

Manager, and go to the Processes tab. Right-click on the Notepad.exe process,

and select the Set Priority option. You can see that Notepad’s process priority

class is Realtime, as shown in the following dialog box.

398 Windows Internals, Fifth Edition

Windows System Resource Manager

Windows Server 2008 Enterprise Edition and Windows Server 2008 Datacenter Edition

include an optionally installable component called Windows System Resource Manager

(WSRM). It permits the administrator to configure policies that specify CPU utilization,

affinity settings, and memory limits (both physical and virtual) for processes. In addi-

tion, WSRM can generate resource utilization reports that can be used for accounting

and verification of service-level agreements with users.

Policies can be applied for specific applications (by matching the name of the image

with or without specific command-line arguments), users, or groups. The policies can

be scheduled to take effect at certain periods or can be enabled all the time.

After you have set a resource-allocation policy to manage specific processes, the WSRM

service monitors CPU consumption of managed processes and adjusts process base

priorities when those processes do not meet their target CPU allocations.

 Chapter 5 Processes, Threads, and Jobs 399

The physical memory limitation uses the function SetProcessWorkingSetSizeEx to set a

hard-working set maximum. The virtual memory limit is implemented by the service

checking the private virtual memory consumed by the processes. (See Chapter 9 for an

explanation of these memory limits.) If this limit is exceeded, WSRM can be configured

to either kill the processes or write an entry to the Event Log. This behavior could be

used to detect a process with a memory leak before it consumes all the available com-

mitted virtual memory on the system. Note that WSRM memory limits do not apply to

Address Windowing Extensions (AWE) memory, large page memory, or kernel memory

(nonpaged or paged pool).

Real-Time Priorities

You can raise or lower thread priorities within the dynamic range in any application; how-

ever, you must have the increase scheduling priority privilege to enter the real-time range. Be

aware that many important Windows kernel-mode system threads run in the real-time prior-

ity range, so if threads spend excessive time running in this range, they might block critical

system functions (such as in the memory manager, cache manager, or other device drivers).

Note As illustrated in the following figure showing the x86 interrupt request levels (IRQLs),

although Windows has a set of priorities called real-time, they are not real-time in the common

definition of the term. This is because Windows doesn’t provide true real-time operating system

facilities, such as guaranteed interrupt latency or a way for threads to obtain a guaranteed execu-

tion time. For more information, see the sidebar “Windows and Real-Time Processing” in Chapter

3 as well as the MSDN Library article “Real-Time Systems and Microsoft Windows NT.”

Interrupt Levels vs. Priority Levels

As illustrated in the following figure of the interrupt request levels (IRQLs) for a 32-bit

system, threads normally run at IRQL 0 or 1. (For a description of how Windows uses

interrupt levels, see Chapter 3.) User-mode code always runs at IRQL 0. Because of this,

no user-mode thread, regardless of its priority, blocks hardware interrupts (although

high-priority real-time threads can block the execution of important system threads).

Only kernel-mode APCs execute at IRQL 1 because they interrupt the execution of a

thread. (For more information on APCs, see Chapter 3.) Threads running in kernel mode

can raise IRQL to higher levels, though—for example, while executing a system call that

involves thread dispatching.

400 Windows Internals, Fifth Edition

31

30

29

28

27

26

3

1

2

0
Thread priorities 0–31

Hardware interrupts

Software interrupts

IRQLs

Device 1

DPC/dispatch

APC

Passive

High

Power fail

Inter-processor interrupt

Clock

Profile

Device

Thread States

Before you can comprehend the thread-scheduling algorithms, you need to understand the

various execution states that a thread can be in. Figure 5-14 illustrates the state transitions

for threads. (The numeric values shown represent the value of the thread state performance

counter.) More details on what happens at each transition are included later in this section.

The thread states are as follows:

Ready A thread in the ready state is waiting to execute. When looking for a thread to

execute, the dispatcher considers only the pool of threads in the ready state.

Deferred ready This state is used for threads that have been selected to run on a spe-

cific processor but have not yet been scheduled. This state exists so that the kernel can

minimize the amount of time the systemwide lock on the scheduling database is held.

Standby A thread in the standby state has been selected to run next on a particular

processor. When the correct conditions exist, the dispatcher performs a context switch

to this thread. Only one thread can be in the standby state for each processor on the

system. Note that a thread can be preempted out of the standby state before it ever

executes (if, for example, a higher priority thread becomes runnable before the standby

thread begins execution).

Running Once the dispatcher performs a context switch to a thread, the thread enters

the running state and executes. The thread’s execution continues until its quantum ends

(and another thread at the same priority is ready to run), it is preempted by a higher

priority thread, it terminates, it yields execution, or it voluntarily enters the wait state.

 Chapter 5 Processes, Threads, and Jobs 401

Waiting A thread can enter the wait state in several ways: a thread can voluntarily

wait for an object to synchronize its execution, the operating system can wait on the

thread’s behalf (such as to resolve a paging I/O), or an environment subsystem can

direct the thread to suspend itself. When the thread’s wait ends, depending on the pri-

ority, the thread either begins running immediately or is moved back to the ready state.

Gate Waiting When a thread does a wait on a gate dispatcher object (see Chapter

3 for more information on gates), it enters the gate waiting state instead of the wait-

ing state. This difference is important when breaking a thread’s wait as the result of

an APC. Because gates don’t use the dispatcher lock, but a per-object lock, the kernel

needs to perform some unique locking operations when breaking the wait of a thread

waiting on a gate and a way to differentiate this from a normal wait.

Transition A thread enters the transition state if it is ready for execution but its kernel

stack is paged out of memory. Once its kernel stack is brought back into memory, the

thread enters the ready state.

Terminated When a thread finishes executing, it enters the terminated state. Once

the thread is terminated, the executive thread block (the data structure in nonpaged

pool that describes the thread) might or might not be deallocated. (The object man-

ager sets policy regarding when to delete the object.)

Initialized This state is used internally while a thread is being created.

Ready (1)

Deferred
ready (7) Running (2)

voluntary
switch

preemption,
quantum end

Init (0)

Terminate (4)Transition (6)

Standby (3)preempt

Waiting (5) or
Gate waiting (8)

FIGURE 5-14 Thread states and transitions

402 Windows Internals, Fifth Edition

EXPERIMENT: Thread-Scheduling State Changes

You can watch thread-scheduling state changes with the Performance tool in Windows.

This utility can be useful when you’re debugging a multithreaded application and

you’re unsure about the state of the threads running in the process. To watch thread-

scheduling state changes by using the Performance tool, follow these steps:

 1. Run Notepad (Notepad.exe).

 2. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability and Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 3. Select chart view if you’re in some other view.

 4. Right-click on the graph, and choose Properties.

 5. Click the Graph tab, and change the chart vertical scale maximum to 7. (As you’ll

see from the explanation text for the performance counter, thread states are

numbered from 0 through 7.) Click OK.

 6. Click the Add button on the toolbar to bring up the Add Counters dialog box.

 7. Select the Thread performance object, and then select the Thread State counter.

Select the Show Description check box to see the definition of the values:

 8. In the Instances box, select <All instances> and click Search. Scroll down until you

see the Notepad process (notepad/0); select it, and click the Add button.

 9. Scroll back up in the Instances box to the Mmc process (the Microsoft

Management Console process running the System Monitor), select all the threads

(mmc/0, mmc/1, and so on), and add them to the chart by clicking the Add but-

ton. Before you click Add, you should see something like the following dialog box.

 Chapter 5 Processes, Threads, and Jobs 403

 10. Now close the Add Counters dialog box by clicking OK

 11. You should see the state of the Notepad thread (the very top line in the following

figure) as a 5, which, as shown in the explanation text you saw under step 7, rep-

resents the waiting state (because the thread is waiting for GUI input):

404 Windows Internals, Fifth Edition

 12. Notice that one thread in the Mmc process (running the Performance tool snap-

in) is in the running state (number 2). This is the thread that’s querying the thread

states, so it’s always displayed in the running state.

 13. You’ll never see Notepad in the running state (unless you’re on a multiprocessor

system) because Mmc is always in the running state when it gathers the state of

the threads you’re monitoring.

Dispatcher Database

To make thread-scheduling decisions, the kernel maintains a set of data structures known

collectively as the dispatcher database, illustrated in Figure 5-15. The dispatcher database

keeps track of which threads are waiting to execute and which processors are executing

which threads.

To improve scalability, including thread-dispatching concurrency, Windows multiprocessor

systems have per-processor dispatcher ready queues, as illustrated in Figure 5-15. In this way

each CPU can check its own ready queues for the next thread to run without having to lock

the systemwide ready queues. (Versions of Windows before Windows Server 2003 used a

global database).

The per-processor ready queues, as well as the per-processor ready summary, are part of the

processor control block (PRCB) structure. (To see the fields in the PRCB, type dt nt!_prcb in

the kernel debugger.) The names of each component that we will talk about (in italics) are

field members of the PRCB structure.

The dispatcher ready queues (DispatcherReadyListHead) contain the threads that are in the

ready state, waiting to be scheduled for execution. There is one queue for each of the 32 pri-

ority levels. To speed up the selection of which thread to run or preempt, Windows maintains

a 32-bit bit mask called the ready summary (ReadySummary). Each bit set indicates one or

more threads in the ready queue for that priority level. (Bit 0 represents priority 0, and so on.)

Instead of scanning each ready list to see whether it is empty or not (which would make

scheduling decisions dependent on the number of different priority threads), a single bit scan

is performed as a native processor command to find the highest bit set. Regardless of the

number of threads in the ready queue, this operation takes a constant amount of time, which

is why you may sometimes see the Windows scheduling algorithm referred to as an O(1), or

constant time, algorithm.

 Chapter 5 Processes, Threads, and Jobs 405

Process

Thread 1 Thread 2

Ready summary

Deferred
ready queue

CPU 0
ready queues

31

0

31 0

Process

Thread 3 Thread 4

Ready summary

31 0
Deferred

ready queue

CPU 1
ready queues

31

0

FIGURE 5-15 Windows multiprocessor dispatcher database

Table 5-16 lists the KPRCB fields involved in thread scheduling.

TABLE 5-16 Thread-Scheduling KPRCB Fields

KPRCB Field Type Description

ReadySummary Bitmask (32 bits) Bitmask of priority levels that have

one or more ready threads

DeferredReadyListHead Singly linked list Single list head for the deferred

ready queue

DispatcherReadyListHead Array of 32 list entries List heads for the 32 ready queues

The dispatcher database is synchronized by raising IRQL to SYNCH_LEVEL (which is defined

as level 2). (For an explanation of interrupt priority levels, see the “Trap Dispatching” sec-

tion in Chapter 3.) Raising IRQL in this way prevents other threads from interrupting thread

dispatching on the processor because threads normally run at IRQL 0 or 1. However, on

a multiprocessor system, more is required than just raising IRQL because other proces-

sors can simultaneously raise to the same IRQL and attempt to operate on the dispatcher

database. How Windows synchronizes access to the dispatcher database is explained in the

“Multiprocessor Systems” section later in the chapter.

406 Windows Internals, Fifth Edition

Quantum

As mentioned earlier in the chapter, a quantum is the amount of time a thread gets to run

before Windows checks to see whether another thread at the same priority is waiting to run.

If a thread completes its quantum and there are no other threads at its priority, Windows

permits the thread to run for another quantum.

On Windows Vista, threads run by default for 2 clock intervals; on Windows Server systems,

by default, a thread runs for 12 clock intervals. (We’ll explain how you can change these val-

ues later.) The rationale for the longer default value on server systems is to minimize context

switching. By having a longer quantum, server applications that wake up as the result of a cli-

ent request have a better chance of completing the request and going back into a wait state

before their quantum ends.

The length of the clock interval varies according to the hardware platform. The frequency

of the clock interrupts is up to the HAL, not the kernel. For example, the clock interval

for most x86 uniprocessors is about 10 milliseconds, and for most x86 and x64 multi-

processors it is about 15 milliseconds. This clock interval is stored in the kernel variable

KeMaximumIncrement as hundreds of nanoseconds.

Because of changes in thread run-time accounting in Windows Vista (briefly mentioned ear-

lier in the thread activity experiment), although threads still run in units of clock intervals, the

system does not use the count of clock ticks as the deciding factor for how long a thread has

run and whether its quantum has expired. Instead, when the system starts up, a calculation

is made whose result is the number of clock cycles that each quantum is equivalent to (this

value is stored in the kernel variable KiCyclesPerClockQuantum). This calculation is made by

multiplying the processor speed in Hz (CPU clock cycles per second) with the number of sec-

onds it takes for one clock tick to fire (based on the KeMaximumIncrement value described

above).

The end result of this new accounting method is that, as of Windows Vista, threads do not

actually run for a quantum number based on clock ticks; they instead run for a quantum
target, which represents an estimate of what the number of CPU clock cycles the thread has

consumed should be when its turn would be given up. This target should be equal to an

equivalent number of clock interval timer ticks because, as we’ve just seen, the calculation of

clock cycles per quantum is based on the clock interval timer frequency, which you can check

using the following experiment. On the other hand, because interrupt cycles are not charged

to the thread, the actual clock time may be longer.

 Chapter 5 Processes, Threads, and Jobs 407

EXPERIMENT: Determining the Clock Interval Frequency

The Windows GetSystemTimeAdjustment function returns the clock interval. To deter-

mine the clock interval, download and run the Clockres program from Windows

Sysinternals (www.microsoft.com/technet/sysinternals). Here’s the output from a dual-

core 32-bit Windows Vista system:

C:\>clockres

ClockRes - View the system clock resolution

By Mark Russinovich

SysInternals - www.sysinternals.com

The system clock interval is 15.600100 ms

Quantum Accounting

Each process has a quantum reset value in the kernel process block. This value is used when

creating new threads inside the process and is duplicated in the kernel thread block, which

is then used when giving a thread a new quantum target. The quantum reset value is stored

in terms of actual quantum units (we’ll discuss what these mean soon), which are then multi-

plied by the number of clock cycles per quantum, resulting in the quantum target.

As a thread runs, CPU clock cycles are charged at different events (context switches, inter-

rupts, and certain scheduling decisions). If at a clock interval timer interrupt, the number of

CPU clock cycles charged has reached (or passed) the quantum target, then quantum end

processing is triggered. If there is another thread at the same priority waiting to run, a con-

text switch occurs to the next thread in the ready queue.

Internally, a quantum unit is represented as one third of a clock tick (so one clock tick equals

three quantums). This means that on Windows Vista systems, threads, by default, have a

quantum reset value of 6 (2 * 3), and that Windows Server 2008 systems have a quantum

reset value of 36 (12 * 3). For this reason, the KiCyclesPerClockQuantum value is divided

by three at the end of the calculation previously described, since the original value would

describe only CPU clock cycles per clock interval timer tick.

The reason a quantum was stored internally as a fraction of a clock tick rather than as

an entire tick was to allow for partial quantum decay on wait completion on versions of

Windows prior to Windows Vista. Prior versions used the clock interval timer for quantum

expiration. If this adjustment were not made, it would have been possible for threads never

to have their quantums reduced. For example, if a thread ran, entered a wait state, ran again,

and entered another wait state but was never the currently running thread when the clock

interval timer fired, it would never have its quantum charged for the time it was running.

Because threads now have CPU clock cycles charged instead of quantums, and because this

no longer depends on the clock interval timer, these adjustments are not required.

408 Windows Internals, Fifth Edition

EXPERIMENT: Determining the Clock Cycles per Quantum

Windows doesn’t expose the number of clock cycles per quantum through any func-

tion, but with the calculation and description we’ve given, you should be able to

determine this on your own using the following steps and a kernel debugger such as

WinDbg in local debugging mode.

 1. Obtain your processor frequency as Windows has detected it. You can use the

value stored in the PRCB’s MHz field, which can be displayed with the !cpuinfo

command. Here is a sample output of a dual-core Intel system running at 2829

MHz.

lkd> !cpuinfo

CP F/M/S Manufacturer MHz PRCB Signature MSR 8B Signature Features

 0 6,15,6 GenuineIntel 2829 000000c700000000 >000000c700000000<a00f3fff

 1 6,15,6 GenuineIntel 2829 000000c700000000 a00f3fff

 Cached Update Signature 000000c700000000

 Initial Update Signature 000000c700000000

 2. Convert the number to Hertz (Hz). This is the number of CPU clock cycles that

occur each second on your system. In this case, 2,829,000,000 cycles per second.

 3. Obtain the clock interval on your system by using clockres. This measures how

long it takes before the clock fires. On the sample system used here, this interval

was 15.600100 ms.

 4. Convert this number to the number of times the clock interval timer fires each

second. One second is 1000 ms, so divide the number derived in step 3 by 1000.

In this case, the timer fires every 0.0156001 second.

 5. Multiply this count by the number of cycles each second that you obtained in

step 2. In our case, 44,132,682.9 cycles have elapsed after each clock interval.

 6. Remember that each quantum unit is one-third of a clock interval, so divide the

number of cycles by three. In our example, this gives us 14,710,894, or 0xE0786E

in hexidecimal. This is the number of clock cycles each quantum unit should take

on a system running at 2829 MHz with a clock interval of around 15 ms.

 7. To verify your calculation, dump the value of KiCyclesPerClockQuantum on your

system—it should match.

lkd> dd nt!KiCyclesPerClockQuantum l1

81d31ae8 00e0786e

Controlling the Quantum

You can change the thread quantum for all processes, but you can choose only one of two

settings: short (2 clock ticks, the default for client machines) or long (12 clock ticks, the

default for server systems).

 Chapter 5 Processes, Threads, and Jobs 409

Note By using the job object on a system running with long quantums, you can select other

quantum values for the processes in the job. For more information on the job object, see the “Job

Objects” section later in the chapter.

To change this setting, right-click on your computer name’s icon on the desktop, choose

Properties, click the Advanced System Settings label, select the Advanced tab, click the

Settings button in the Performance section, and finally click the Advanced tab. The dialog

box displayed is shown in Figure 5-16.

FIGURE 5-16 Quantum configuration in the Performance Options dialog box

The Programs setting designates the use of short, variable quantums—the default for

Windows Vista. If you install Terminal Services on Windows Server 2008 systems and con-

figure the server as an application server, this setting is selected so that the users on the

terminal server will have the same quantum settings that would normally be set on a desktop

or client system. You might also select this manually if you were running Windows Server as

your desktop operating system.

The Background Services option designates the use of long, fixed quantums—the default for

Windows Server 2008 systems. The only reason you might select this option on a workstation

system is if you were using the workstation as a server system.

410 Windows Internals, Fifth Edition

One additional difference between the Programs and Background Services settings is the

effect they have on the quantum of the threads in the foreground process. This is explained

in the next section.

Quantum Boosting

When a window is brought into the foreground on a client system, all the threads in the pro-

cess containing the thread that owns the foreground window have their quantums tripled.

Thus, threads in the foreground process run with a quantum of 6 clock ticks, whereas threads

in other processes have the default client quantum of 2 clock ticks. In this way, when you

switch away from a CPU-intensive process, the new foreground process will get proportion-

ally more of the CPU, because when its threads run they will have a longer turn than back-

ground threads (again, assuming the thread priorities are the same in both the foreground

and background processes).

Note that this adjustment of quantums applies only to processes with a priority higher than

Idle on systems configured to Programs in the Performance Options settings described in the

previous section. Thread quantums are not changed for the foreground process on systems

configured to Background Services (the default on Windows Server 2008 systems).

Quantum Settings Registry Value

The user interface to control quantum settings described earlier modifies the registry value

HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation. In addi-

tion to specifying the relative length of thread quantums (short or long), this registry value

also defines whether or not threads in the foreground process should have their quantums

boosted (and if so, the amount of the boost). This value consists of 6 bits divided into the

three 2-bit fields shown in Figure 5-17.

FIGURE 5-17 Fields of the Win32PrioritySeparation registry value

The fields shown in Figure 5-17 can be defined as follows:

Short vs. Long A setting of 1 specifies long, and 2 specifies short. A setting of 0 or

3 indicates that the default will be used (short for Windows Vista, long for Windows

Server 2008 systems).

Variable vs. Fixed A setting of 1 means to vary the quantum for the foreground pro-

cess, and 2 means that quantum values don’t change for foreground processes. A set-

ting of 0 or 3 means that the default (which is variable for Windows Vista and fixed for

Windows Server 2008 systems) will be used.

 Chapter 5 Processes, Threads, and Jobs 411

Foreground Quantum Boost This field (stored in the kernel variable

PsPrioritySeperation) must have a value of 0, 1, or 2. (A setting of 3 is invalid

and treated as 2.) It is used as an index into a three-element byte array named

PspForegroundQuantum to obtain the quantum for the threads in the foreground pro-

cess. The quantum for threads in background processes is taken from the first entry in

this quantum table. Table 5-17 shows the possible settings for PspForegroundQuantum.

TABLE 5-17 Quantum Values

Short Long

Variable 6 12 18 12 24 36

Fixed 18 18 18 36 36 36

Note that when you’re using the Performance Options dialog box described earlier, you can

choose from only two combinations: short quantums with foreground quantums tripled, or

long quantums with no quantum changes for foreground threads. However, you can select

other combinations by modifying the Win32PrioritySeparation registry value directly.

EXPERIMENT: Effects of Changing the Quantum Configuration

Using a local debugger (Kd or WinDbg), you can see how the two quantum configura-

tion settings, Programs and Background Services, affect the PsPrioritySeperation and

PspForegroundQuantum tables, as well as modify the QuantumReset value of threads

on the system. Take the following steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s

icon on the desktop, and choose Properties). Click the Advanced System Settings

label, select the Advanced tab, click the Settings button in the Performance sec-

tion, and finally click the Advanced tab. Select the Programs option and click

Apply. Keep this window open for the duration of the experiment.

 2. Dump the values of PsPrioritySeperation (this is a deliberate misspelling inside the

Windows kernel, not an error in this book) and PspForegroundQuantum, as shown

here. The values shown are what you should see on a Windows Vista system after

making the change in step 1. Notice how the variable, short quantum table is

being used, and that a priority boost of 2 will apply to foreground applications.

lkd> dd PsPrioritySeperation l1

81d3101c 00000002

lkd> db PspForegroundQuantum l3

81d0946c 06 0c 12 ...

412 Windows Internals, Fifth Edition

 3. Now take a look at the QuantumReset value of any process on the system. As

described earlier, this is the default, full quantum of each thread on the system

when it is replenished. This value is cached into each thread of the process,

but the KPROCESS structure is easier to look at. Notice in this case it is 6, since

WinDbg, like most other applications, gets the quantum set in the first entry of

the PspForegroundQuantum table.

lkd> .process

Implicit process is now 85b32d90

lkd> dt _KPROCESS 85b32d90

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY [0x85b32da0 - 0x85b32da0]

 +0x018 DirectoryTableBase : 0xb45b0880

 +0x01c Unused0 : 0

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : 0x20ac

 +0x032 Iopl : 0 ''

 +0x033 Unused : 0 ''

 +0x034 ActiveProcessors : 1

 +0x038 KernelTime : 0

 +0x03c UserTime : 0

 +0x040 ReadyListHead : _LIST_ENTRY [0x85b32dd0 - 0x85b32dd0]

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : (null)

 +0x050 ThreadListHead : _LIST_ENTRY [0x861e7e0c - 0x8620637c]

 +0x058 ProcessLock : 0

 +0x05c Affinity : 3

 +0x060 AutoAlignment : 0y0

 +0x060 DisableBoost : 0y0

 +0x060 DisableQuantum : 0y0

 +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)

 +0x060 ProcessFlags : 0

 +0x064 BasePriority : 8 ''

 +0x065 QuantumReset : 6 ''

 4. Now change the Performance option to Background Services in the dialog box

you opened in step 1.

 5. Repeat the commands shown in steps 2 and 3. You should see the values change

in a manner consistent with our discussion in this section:

lkd> dd PsPrioritySeperation L1

81d3101c 00000000

lkd> db PspForegroundQuantum l 3

81d0946c 24 24 24 $$$

lkd> dt _KPROCESS 85b32d90

nt!_KPROCESS

 +0x000 Header : _DISPATCHER_HEADER

 +0x010 ProfileListHead : _LIST_ENTRY [0x85b32da0 - 0x85b32da0]

 +0x018 DirectoryTableBase : 0xb45b0880

 +0x01c Unused0 : 0

 Chapter 5 Processes, Threads, and Jobs 413

 +0x020 LdtDescriptor : _KGDTENTRY

 +0x028 Int21Descriptor : _KIDTENTRY

 +0x030 IopmOffset : 0x20ac

 +0x032 Iopl : 0 ''

 +0x033 Unused : 0 ''

 +0x034 ActiveProcessors : 1

 +0x038 KernelTime : 0

 +0x03c UserTime : 0

 +0x040 ReadyListHead : _LIST_ENTRY [0x85b32dd0 - 0x85b32dd0]

 +0x048 SwapListEntry : _SINGLE_LIST_ENTRY

 +0x04c VdmTrapcHandler : (null)

 +0x050 ThreadListHead : _LIST_ENTRY [0x861e7e0c - 0x860c14f4]

 +0x058 ProcessLock : 0

 +0x05c Affinity : 3

 +0x060 AutoAlignment : 0y0

 +0x060 DisableBoost : 0y0

 +0x060 DisableQuantum : 0y0

 +0x060 ReservedFlags : 0y00000000000000000000000000000 (0)

 +0x060 ProcessFlags : 0

 +0x064 BasePriority : 8 ''

 +0x065 QuantumReset : 36 '$'

Scheduling Scenarios

Windows bases the question of “Who gets the CPU?” on thread priority; but how does this

approach work in practice? The following sections illustrate just how priority-driven preemp-

tive multitasking works on the thread level.

Voluntary Switch

First a thread might voluntarily relinquish use of the processor by entering a wait state on

some object (such as an event, a mutex, a semaphore, an I/O completion port, a process, a

thread, a window message, and so on) by calling one of the Windows wait functions (such

as WaitForSingleObject or WaitForMultipleObjects). Waiting for objects is described in more

detail in Chapter 3.

Figure 5-18 illustrates a thread entering a wait state and Windows selecting a new thread

to run.

In Figure 5-18, the top block (thread) is voluntarily relinquishing the processor so that the

next thread in the ready queue can run (as represented by the halo it has when in the

Running column). Although it might appear from this figure that the relinquishing thread’s

priority is being reduced, it’s not—it’s just being moved to the wait queue of the objects the

thread is waiting for.

414 Windows Internals, Fifth Edition

FIGURE 5-18 Voluntary switching

Preemption

In this scheduling scenario, a lower-priority thread is preempted when a higher-priority

thread becomes ready to run. This situation might occur for a couple of reasons:

A higher-priority thread’s wait completes. (The event that the other thread was waiting

for has occurred.)

A thread priority is increased or decreased.

In either of these cases, Windows must determine whether the currently running thread

should still continue to run or whether it should be preempted to allow a higher-priority

thread to run.

Note Threads running in user mode can preempt threads running in kernel mode—the mode in

which the thread is running doesn’t matter. The thread priority is the determining factor.

When a thread is preempted, it is put at the head of the ready queue for the priority it was

running at. Figure 5-19 illustrates this situation.

In Figure 5-19, a thread with priority 18 emerges from a wait state and repossesses the CPU,

causing the thread that had been running (at priority 16) to be bumped to the head of the

ready queue. Notice that the bumped thread isn’t going to the end of the queue but to the

beginning; when the preempting thread has finished running, the bumped thread can com-

plete its quantum.

 Chapter 5 Processes, Threads, and Jobs 415

FIGURE 5-19 Preemptive thread scheduling

Quantum End

When the running thread exhausts its CPU quantum, Windows must determine whether the

thread’s priority should be decremented and then whether another thread should be sched-

uled on the processor.

If the thread priority is reduced, Windows looks for a more appropriate thread to schedule.

(For example, a more appropriate thread would be a thread in a ready queue with a higher

priority than the new priority for the currently running thread.) If the thread priority isn’t

reduced and there are other threads in the ready queue at the same priority level, Windows

selects the next thread in the ready queue at that same priority level and moves the previ-

ously running thread to the tail of that queue (giving it a new quantum value and changing

its state from running to ready). This case is illustrated in Figure 5-20. If no other thread of

the same priority is ready to run, the thread gets to run for another quantum.

FIGURE 5-20 Quantum end thread scheduling

416 Windows Internals, Fifth Edition

As we’ve seen, instead of simply relying on a clock interval timer–based quantum to schedule

threads, Windows uses an accurate CPU clock cycle count to maintain quantum targets. One

factor we haven’t yet mentioned is that Windows also uses this count to determine whether

quantum end is currently appropriate for the thread—something that may have happened

previously and is important to discuss.

Under the scheduling model prior to Windows Vista, which relied only on the clock interval

timer, the following situation could occur:

Threads A and B become ready to run during the middle of an interval (scheduling

code runs not just at each clock interval, so this is often the case).

Thread A starts running but is interrupted for a while. The time spent handling the

interrupt is charged to the thread.

Interrupt processing finishes, thread A starts running again, but it quickly hits the next

clock interval. The scheduler can only assume that thread A had been running all this

time and now switches to thread B.

Thread B starts running and has a chance to run for a full clock interval (barring pre-

emption or interrupt handling).

In this scenario, thread A was unfairly penalized in two different ways. First of all, the time

that it had to spend handling a device interrupt was accounted to its own CPU time, even

though the thread had probably nothing to do with the interrupt. (Recall that interrupts

are handled in the context of whichever thread had been running at the time.) It was also

unfairly penalized for the time the system was idling inside that clock interval before it was

scheduled.

Figure 5-21 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1

Thread A

Idle Thread B

Interrupt

FIGURE 5-21 Unfair time slicing in previous versions of Windows

Because Windows keeps an accurate count of the exact number of CPU clock cycles spent

doing work that the thread was scheduled to do (which means excluding interrupts), and

because it keeps a quantum target of clock cycles that should have been spent by the thread

at the end of its quantum, both of the unfair decisions that would have been made against

thread A will not happen in Windows.

 Chapter 5 Processes, Threads, and Jobs 417

Instead, the following situation will occur:

Threads A and B become ready to run during the middle of an interval.

Thread A starts running but is interrupted for a while. The CPU clock cycles spent han-

dling the interrupt are not charged to the thread.

Interrupt processing finishes, thread A starts running again, but it quickly hits the

next clock interval. The scheduler looks at the number of CPU clock cycles that have

been charged to the thread and compares them to the expected CPU clock cycles that

should have been charged at quantum end.

Because the former number is much smaller than it should be, the scheduler assumes

that thread A started running in the middle of a clock interval and may have addition-

ally been interrupted.

Thread A gets its quantum increased by another clock interval, and the quantum target

is recalculated. Thread A now has its chance to run for a full clock interval.

At the next clock interval, thread A has finished its quantum, and thread B now gets a

chance to run.

Figure 5-22 represents this scenario.

Threads A and B
become ready to run

Interval 2Interval 1 Interval 3

Interrupt

Idle Thread A Thread B

FIGURE 5-22 Fair time slicing in current versions of Windows

Termination

When a thread finishes running (either because it returned from its main routine, called

ExitThread, or was killed with TerminateThread), it moves from the running state to the termi-

nated state. If there are no handles open on the thread object, the thread is removed from

the process thread list and the associated data structures are deallocated and released.

418 Windows Internals, Fifth Edition

Context Switching

A thread’s context and the procedure for context switching vary depending on the proces-

sor’s architecture. A typical context switch requires saving and reloading the following data:

Instruction pointer

Kernel stack pointer

A pointer to the address space in which the thread runs (the process’s page table

directory)

The kernel saves this information from the old thread by pushing it onto the current (old

thread’s) kernel-mode stack, updating the stack pointer, and saving the stack pointer in the

old thread’s KTHREAD block. The kernel stack pointer is then set to the new thread’s kernel

stack, and the new thread’s context is loaded. If the new thread is in a different process,

it loads the address of its page table directory into a special processor register so that its

address space is available. (See the description of address translation in Chapter 9.) If a kernel

APC that needs to be delivered is pending, an interrupt at IRQL 1 is requested. Otherwise,

control passes to the new thread’s restored instruction pointer and the new thread resumes

execution.

Idle Thread

When no runnable thread exists on a CPU, Windows dispatches the per-CPU idle thread. Each

CPU is allotted one idle thread because on a multiprocessor system one CPU can be execut-

ing a thread while other CPUs might have no threads to execute.

Various Windows process viewer utilities report the idle process using different names.

Task Manager and Process Explorer call it “System Idle Process,” while Tlist calls it “System

Process.” If you look at the EPROCESS structure’s ImageFileName member, you’ll see the

internal name for the process is “Idle.” Windows reports the priority of the idle thread as 0

(15 on x64 systems). In reality, however, the idle threads don’t have a priority level because

they run only when there are no real threads to run—they are not scheduled and never part

of any ready queues. (Remember, only one thread per Windows system is actually running at

priority 0—the zero page thread, explained in Chapter 9.)

Apart from priority, there are many other fields in the idle process or its threads that may be

reported as 0. This occurs because the idle process is not an actual full-blown object man-

ager process object, and neither are its idle threads. Instead, the initial idle thread and idle

process objects are statically allocated and used to bootstrap the system before the process

manager initializes. Subsequent idle thread structures are allocated dynamically as additional

processors are brought online. Once process management initializes, it uses the special vari-

able PsIdleProcess to refer to the idle process.

 Chapter 5 Processes, Threads, and Jobs 419

Apart from some critical fields provided so that these threads and their process can have a

PID and name, everything else is ignored, which means that query APIs may simply return

zeroed data.

The idle loop runs at DPC/dispatch level, polling for work to do, such as delivering deferred

procedure calls (DPCs) or looking for threads to dispatch to. Although some details of the

flow vary between architectures, the basic flow of control of the idle thread is as follows:

 1. Enables and disables interrupts (allowing any pending interrupts to be delivered).

 2. Checks whether any DPCs (described in Chapter 3) are pending on the processor.

If DPCs are pending, clears the pending software interrupt and delivers them. (This

will also perform timer expiration, as well as deferred ready processing. The latter is

explained in the upcoming multiprocessor scheduling section.)

 3. Checks whether a thread has been selected to run next on the processor, and if so, dis-

patches that thread.

 4. Calls the registered power management processor idle routine (in case any power

management functions need to be performed), which is either in the processor power

driver (such as intelppm.sys) or in the HAL if such a driver is unavailable.

 5. On debug systems, checks if there is a kernel debugger trying to break into the system

and gives it access.

 6. If requested, checks for threads waiting to run on other processors and schedules them

locally. (This operation is also explained in the upcoming multiprocessor scheduling

section.)

Priority Boosts

In six cases, the Windows scheduler can boost (increase) the current priority value of threads:

On completion of I/O operations

After waiting for executive events or semaphores

When a thread has been waiting on an executive resource for too long

After threads in the foreground process complete a wait operation

When GUI threads wake up because of windowing activity

When a thread that’s ready to run hasn’t been running for some time (CPU starvation)

The intent of these adjustments is to improve overall system throughput and responsiveness

as well as resolve potentially unfair scheduling scenarios. Like any scheduling algorithms,

however, these adjustments aren’t perfect, and they might not benefit all applications.

420 Windows Internals, Fifth Edition

Note Windows never boosts the priority of threads in the real-time range (16 through 31).

Therefore, scheduling is always predictable with respect to other threads in the real-time range.

Windows assumes that if you’re using the real-time thread priorities, you know what you’re

doing.

Windows Vista adds one more scenario in which a priority boost can occur, multimedia play-

back. Unlike the other priority boosts, which are applied directly by kernel code, multimedia

playback boosts are managed by a user-mode service called the MultiMedia Class Scheduler

Service (MMCSS). (Although the boosts are still done in kernel mode, the request to boost

the threads is managed by this user-mode service.) We’ll first cover the typical kernel-

 managed priority boosts and then talk about MMCSS and the kind of boosting it performs.

Priority Boosting after I/O Completion

Windows gives temporary priority boosts upon completion of certain I/O operations so

that threads that were waiting for an I/O will have more of a chance to run right away and

process whatever was being waited for. Recall that 1 quantum unit is deducted from the

thread’s remaining quantum when it wakes up so that I/O bound threads aren’t unfairly

favored. Although you’ll find recommended boost values in the Windows Driver Kit (WDK)

header files (by searching for “#define IO” in Wdm.h or Ntddk.h), the actual value for the

boost is up to the device driver. (These values are listed in Table 5-18.) It is the device driver

that specifies the boost when it completes an I/O request on its call to the kernel function

IoCompleteRequest. In Table 5-18, notice that I/O requests to devices that warrant better

responsiveness have higher boost values.

TABLE 5-18 Recommended Boost Values

Device Boost

Disk, CD-ROM, parallel, video 1

Network, mailslot, named pipe, serial 2

Keyboard, mouse 6

Sound 8

The boost is always applied to a thread’s current priority, not its base priority. As illustrated

in Figure 5-23, after the boost is applied, the thread gets to run for one quantum at the

elevated priority level. After the thread has completed its quantum, it decays one priority

level and then runs another quantum. This cycle continues until the thread’s priority level

has decayed back to its base priority. A thread with a higher priority can still preempt the

boosted thread, but the interrupted thread gets to finish its time slice at the boosted priority

level before it decays to the next lower priority.

 Chapter 5 Processes, Threads, and Jobs 421

Round-robin at
base priority

Boost upon
wait complete

Quantum

Priority decay at
quantum end

Preempt
(before quantum end)

RunRunWaitRun

Priority

Time

FIGURE 5-23 Priority boosting and decay

As noted earlier, these boosts apply only to threads in the dynamic priority range (0 through

15). No matter how large the boost is, the thread will never be boosted beyond level 15 into

the real-time priority range. In other words, a priority 14 thread that receives a boost of 5 will

go up to priority 15. A priority 15 thread that receives a boost will remain at priority 15.

Boosts After Waiting for Events and Semaphores

When a thread that was waiting for an executive event or a semaphore object has its wait

satisfied (because of a call to the function SetEvent, PulseEvent, or ReleaseSemaphore), it

receives a boost of 1. (See the value for EVENT_ INCREMENT and SEMAPHORE_INCREMENT

in the WDK header files.) Threads that wait for events and semaphores warrant a boost for

the same reason that threads that wait for I/O operations do—threads that block on events

are requesting CPU cycles less frequently than CPU-bound threads. This adjustment helps

balance the scales.

This boost operates the same as the boost that occurs after I/O completion, as described in

the previous section:

The boost is always applied to the base priority (not the current priority).

The priority will never be boosted above 15.

The thread gets to run at the elevated priority for its remaining quantum (as described

earlier, quantums are reduced by 1 when threads exit a wait) before decaying one pri-

ority level at a time until it reaches its original base priority.

A special boost is applied to threads that are awoken as a result of setting an event with

the special functions NtSetEventBoostPriority (used in Ntdll.dll for critical sections) and

KeSetEventBoostPriority (used for executive resources) or if a signaling gate is used (such as

with pushlocks). If a thread waiting for an event is woken up as a result of the special event

422 Windows Internals, Fifth Edition

boost function and its priority is 13 or below, it will have its priority boosted to be the setting

thread’s priority plus one. If its quantum is less than 4 quantum units, it is set to 4 quantum

units. This boost is removed at quantum end.

Boosts During Waiting on Executive Resources

When a thread attempts to acquire an executive resource (ERESOURCE; see Chapter 3 for

more information on kernel synchronization objects) that is already owned exclusively by

another thread, it must enter a wait state until the other thread has released the resource. To

avoid deadlocks, the executive performs this wait in intervals of five seconds instead of doing

an infinite wait on the resource.

At the end of these five seconds, if the resource is still owned, the executive will attempt

to prevent CPU starvation by acquiring the dispatcher lock, boosting the owning thread or

threads, and performing another wait. Because the dispatcher lock is held and the thread’s

WaitNext flag is set to TRUE, this ensures a consistent state during the boosting process until

the next wait is done.

This boost operates in the following manner:

The boost is always applied to the base priority (not the current priority) of the owner

thread.

The boost raises priority to 14.

The boost is only applied if the owner thread has a lower priority than the waiting

thread, and only if the owner thread’s priority isn’t already 14.

The quantum of the thread is reset so that the thread gets to run at the elevated prior-

ity for a full quantum, instead of only the quantum it had left. Just like other boosts, at

each quantum end, the priority boost will slowly decrease by one level.

Because executive resources can be either shared or exclusive, the kernel will first boost the

exclusive owner and then check for shared owners and boost all of them. When the waiting

thread enters the wait state again, the hope is that the scheduler will schedule one of the

owner threads, which will have enough time to complete its work and release the resource.

It’s important to note that this boosting mechanism is used only if the resource doesn’t have

the Disable Boost flag set, which developers can choose to set if the priority inversion mech-

anism described here works well with their usage of the resource.

Additionally, this mechanism isn’t perfect. For example, if the resource has multiple shared

owners, the executive will boost all those threads to priority 14, resulting in a sudden surge

of high-priority threads on the system, all with full quantums. Although the exclusive thread

will run first (since it was the first to be boosted and therefore first on the ready list), the

other shared owners will run next, since the waiting thread’s priority was not boosted. Only

until after all the shared owners have gotten a chance to run and their priority decreased

 Chapter 5 Processes, Threads, and Jobs 423

below the waiting thread will the waiting thread finally get its chance to acquire the resource.

Because shared owners can promote or convert their ownership from shared to exclusive

as soon as the exclusive owner releases the resource, it’s possible for this mechanism not to

work as intended.

Priority Boosts for Foreground Threads After Waits

Whenever a thread in the foreground process completes a wait operation on a kernel object,

the kernel function KiUnwaitThread boosts its current (not base) priority by the current

value of PsPrioritySeperation. (The windowing system is responsible for determining which

process is considered to be in the foreground.) As described in the section on quantum con-

trols, PsPrioritySeperation reflects the quantum-table index used to select quantums for the

threads of foreground applications. However, in this case, it is being used as a priority boost

value.

The reason for this boost is to improve the responsiveness of interactive applications—by

giving the foreground application a small boost when it completes a wait, it has a better

chance of running right away, especially when other processes at the same base priority

might be running in the background.

Unlike other types of boosting, this boost applies to all Windows systems, and you

can’t disable this boost, even if you’ve disabled priority boosting using the Windows

SetThreadPriorityBoost function.

EXPERIMENT: Watching Foreground Priority Boosts and Decays

Using the CPU Stress tool, you can watch priority boosts in action. Take the following

steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s

icon on the desktop, and choose Properties). Click the Advanced System Settings

label, select the Advanced tab, click the Settings button in the Performance sec-

tion, and finally click the Advanced tab. Select the Programs option. This causes

PsPrioritySeperation to get a value of 2.

 2. Run Cpustres.exe, and change the activity of thread 1 from Low to Busy.

 3. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

424 Windows Internals, Fifth Edition

 6. In the Instances box, select <All instances> and click Search. Scroll down until you

see the CPUSTRES process. Select the second thread (thread 1). (The first thread is

the GUI thread.) You should see something like this:

 7. Click the Add button, and then click OK.

 8. Select Properties from the Action menu. Change the Vertical Scale Maximum to

16 and set the interval to Sample Every N Seconds in the Graph Elements area.

 Chapter 5 Processes, Threads, and Jobs 425

 9. Now bring the CPUSTRES process to the foreground. You should see the priority

of the CPUSTRES thread being boosted by 2 and then decaying back to the base

priority as follows:

 10. The reason CPUSTRES receives a boost of 2 periodically is because the thread

you’re monitoring is sleeping about 25 percent of the time and then waking

up (this is the Busy Activity level). The boost is applied when the thread wakes

up. If you set the Activity level to Maximum, you won’t see any boosts because

Maximum in CPUSTRES puts the thread into an infinite loop. Therefore, the thread

doesn’t invoke any wait functions and as a result doesn’t receive any boosts.

 11. When you’ve finished, exit Reliability and Performance Monitor and CPU Stress.

Priority Boosts After GUI Threads Wake Up

Threads that own windows receive an additional boost of 2 when they wake up because

of windowing activity such as the arrival of window messages. The windowing system

(Win32k.sys) applies this boost when it calls KeSetEvent to set an event used to wake up a

GUI thread. The reason for this boost is similar to the previous one—to favor interactive

applications.

426 Windows Internals, Fifth Edition

EXPERIMENT: Watching Priority Boosts on GUI Threads

You can also see the windowing system apply its boost of 2 for GUI threads that wake

up to process window messages by monitoring the current priority of a GUI application

and moving the mouse across the window. Just follow these steps:

 1. Open the System utility in Control Panel (or right-click on your computer name’s

icon on the desktop, and choose Properties). Click the Advanced System Settings

label, select the Advanced tab, click the Settings button in the Performance

section, and finally click the Advanced tab. Be sure that the Programs option is

selected. This causes PsPrioritySeperation to get a value of 2.

 2. Run Notepad from the Start menu by selecting Programs/Accessories/Notepad.

 3. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

 6. In the Instances box, select <All instances>, and then click Search. Scroll down

until you see Notepad thread 0. Click it, click the Add button, and then click OK.

 7. As in the previous experiment, select Properties from the Action menu. Change

the Vertical Scale Maximum to 16, set the interval to Sample Every N Seconds in

the Graph Elements area, and click OK.

 8. You should see the priority of thread 0 in Notepad at 8, 9, or 10. Because

Notepad entered a wait state shortly after it received the boost of 2 that threads

in the foreground process receive, it might not yet have decayed from 10 to 9

and then to 8.

 9. With Reliability and Performance Monitor in the foreground, move the mouse

across the Notepad window. (Make both windows visible on the desktop.) You’ll

see that the priority sometimes remains at 10 and sometimes at 9, for the reasons

just explained. (The reason you won’t likely catch Notepad at 8 is that it runs so

little after receiving the GUI thread boost of 2 that it never experiences more than

one priority level of decay before waking up again because of additional window-

ing activity and receiving the boost of 2 again.)

 10. Now bring Notepad to the foreground. You should see the priority rise to 12

and remain there (or drop to 11, because it might experience the normal priority

decay that occurs for boosted threads on the quantum end) because the thread is

receiving two boosts: the boost of 2 applied to GUI threads when they wake up

 Chapter 5 Processes, Threads, and Jobs 427

to process windowing input and an additional boost of 2 because Notepad is in

the foreground.

 11. If you then move the mouse over Notepad (while it’s still in the foreground),

you might see the priority drop to 11 (or maybe even 10) as it experiences the

priority decay that normally occurs on boosted threads as they complete their

turn. However, the boost of 2 that is applied because it’s the foreground process

remains as long as Notepad remains in the foreground.

 12. When you’ve finished, exit Reliability and Performance Monitor and Notepad.

Priority Boosts for CPU Starvation

Imagine the following situation: you have a priority 7 thread that’s running, preventing a pri-

ority 4 thread from ever receiving CPU time; however, a priority 11 thread is waiting for some

resource that the priority 4 thread has locked. But because the priority 7 thread in the middle

is eating up all the CPU time, the priority 4 thread will never run long enough to finish what-

ever it’s doing and release the resource blocking the priority 11 thread. What does Windows

do to address this situation?

We have previously seen how the executive code responsible for executive resources man-

ages this scenario by boosting the owner threads so that they can have a chance to run and

release the resource. However, executive resources are only one of the many synchronization

constructs available to developers, and the boosting technique will not apply to any other

primitive. Therefore, Windows also includes a generic CPU starvation relief mechanism as

part of a thread called the balance set manager (a system thread that exists primarily to per-

form memory management functions and is described in more detail in Chapter 9).

Once per second, this thread scans the ready queues for any threads that have been in the

ready state (that is, haven’t run) for approximately 4 seconds. If it finds such a thread, the bal-

ance set manager boosts the thread’s priority to 15 and sets the quantum target to an equiv-

alent CPU clock cycle count of 4 quantum units. Once the quantum is expired, the thread’s

priority decays immediately to its original base priority. If the thread wasn’t finished and a

higher priority thread is ready to run, the decayed thread will return to the ready queue,

where it again becomes eligible for another boost if it remains there for another 4 seconds.

The balance set manager doesn’t actually scan all ready threads every time it runs. To mini-

mize the CPU time it uses, it scans only 16 ready threads; if there are more threads at that

priority level, it remembers where it left off and picks up again on the next pass. Also, it will

boost only 10 threads per pass—if it finds 10 threads meriting this particular boost (which

would indicate an unusually busy system), it stops the scan at that point and picks up again

on the next pass.

428 Windows Internals, Fifth Edition

Note We mentioned earlier that scheduling decisions in Windows are not affected by the num-

ber of threads, and that they are made in constant time, or O(1). Because the balance set man-

ager does need to scan ready queues manually, this operation does depend on the number of

threads on the system, and more threads will require more scanning time. However, the balance

set manager is not considered part of the scheduler or its algorithms and is simply an extended

mechanism to increase reliability. Additionally, because of the cap on threads and queues to

scan, the performance impact is minimized and predictable in a worst-case scenario.

Will this algorithm always solve the priority inversion issue? No—it’s not perfect by any

means. But over time, CPU-starved threads should get enough CPU time to finish whatever

processing they were doing and reenter a wait state.

EXPERIMENT: Watching Priority Boosts for CPU Starvation

Using the CPU Stress tool, you can watch priority boosts in action. In this experiment,

we’ll see CPU usage change when a thread’s priority is boosted. Take the following steps:

 1. Run Cpustres.exe. Change the activity level of the active thread (by default,

Thread 1) from Low to Maximum. Change the thread priority from Normal to

Below Normal. The screen should look like this:

 2. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 3. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 Chapter 5 Processes, Threads, and Jobs 429

 4. Select the Thread object, and then select the % Processor Time counter.

 5. In the Instances box, select <All instances>, and then click Search. Scroll down

until you see the CPUSTRES process. Select the second thread (thread 1). (The first

thread is the GUI thread.) You should see something like this:

 6. Click the Add button, and then click OK.

 7. Raise the priority of Performance Monitor to real time by running Task Manager,

clicking the Processes tab, and selecting the Mmc.exe process. Right-click the pro-

cess, select Set Priority, and then select Realtime. (If you receive a Task Manager

Warning message box warning you of system instability, click the Yes button.) If you

have a multiprocessor system, you will also need to change the affinity of the pro-

cess: right-click and select Set Affinity. Then clear all other CPUs except for CPU 0.

 8. Run another copy of CPU Stress. In this copy, change the activity level of Thread 1

from Low to Maximum.

 9. Now switch back to Performance Monitor. You should see CPU activity every 6 or

so seconds because the thread is boosted to priority 15. You can force updates to

occur more frequently than every second by pausing the display with Ctrl+F, and

then pressing Ctrl+U, which forces a manual update of the counters. Keep Ctrl+U

pressed for continual refreshes.

When you’ve finished, exit Performance Monitor and the two copies of CPU Stress.

430 Windows Internals, Fifth Edition

EXPERIMENT: “Listening” to Priority Boosting

To “hear” the effect of priority boosting for CPU starvation, perform the following steps

on a system with a sound card:

 1. Because of MMCSS’s priority boosts (which we will describe in the next subsec-

tion), you will need to stop the MultiMedia Class Scheduler Service by open-

ing the Services management interface (Start, Programs, Administrative Tools,

Services).

 2. Run Windows Media Player (or some other audio playback program), and begin

playing some audio content.

 3. Run Cpustres, and set the activity level of Thread 1 to Maximum.

 4. Raise the priority of Thread 1 from Normal to Time Critical.

 5. You should hear the music playback stop as the compute-bound thread begins

consuming all available CPU time.

 6. Every so often, you should hear bits of sound as the starved thread in the audio

playback process gets boosted to 15 and runs enough to send more data to the

sound card.

 7. Stop Cpustres and Windows Media Player, and start the MMCSS service again.

Priority Boosts for MultiMedia Applications and Games (MMCSS)

As we’ve just seen in the last experiment, although Windows’s CPU starvation priority boosts

may be enough to get a thread out of an abnormally long wait state or potential deadlock,

they simply cannot deal with the resource requirements imposed by a CPU-intensive applica-

tion such as Windows Media Player or a 3D computer game.

Skipping and other audio glitches have been a common source of irritation among Windows

users in the past, and the user-mode audio stack in Windows Vista would have only made

the situation worse since it offers even more chances for preemption. To address this,

Windows Vista incorporates a new service (called MMCSS, described earlier in this chapter)

whose purpose is to ensure “glitch-free” multimedia playback for applications that register

with it.

MMCSS works by defining several tasks, including:

Audio

Capture

Distribution

Games

 Chapter 5 Processes, Threads, and Jobs 431

Playback

Pro Audio

Window Manager

Note You can find the settings for MMCSS, including a lists of tasks (which can be modi-

fied by OEMs to include other specific tasks as appropriate) in the registry keys under HKLM\

SOFTWARE\Microsoft\Windows NT\CurrentVersion\Multimedia\SystemProfile. Additionally, the

SystemResponsiveness value allows you to fine-tune how much CPU usage MMCSS guarantees to

low-priority threads.

In turn, each of these tasks includes information about the various properties that differenti-

ate them. The most important one for scheduling is called the Scheduling Category, which

is the primary factor determining the priority of threads registered with MMCSS. Table 5-19

shows the various scheduling categories.

TABLE 5-19 Scheduling Categories

Category Priority Description

High 23-26 Pro Audio threads running at a higher priority than any other thread on

the system except for critical system threads.

Medium 16-22 Threads part of a foreground application such as Windows Media Player.

Low 8-15 All other threads not part of the previous categories.

Exhausted 1-7 Threads that have exhausted their share of the CPU and will only continue

running if no other higher priority threads are ready to run.

The main mechanism behind MMCSS boosts the priority of threads inside a registered pro-

cess to the priority level matching their scheduling category and relative priority within this

category for a guaranteed period of time. It then lowers those threads to the Exhausted cat-

egory so that other, nonmultimedia threads on the system can also get a chance to execute.

By default, multimedia threads will get 80 percent of the CPU time available, while other

threads will receive 20 percent (based on a sample of 10 ms; in other words, 8 ms and 2 ms).

MMCSS itself runs at priority 27, since it needs to preempt any Pro Audio threads in order to

lower their priority to the Exhausted category.

It is important to emphasize that the kernel still does the actual boosting of the values inside

the KTHREAD (MMCSS simply makes the same kind of system call any other application

would do), and the scheduler is still in control of these threads. It is simply their high prior-

ity that makes them run almost uninterrupted on a machine, since they are in the real-time

range and well above threads that most user applications would be running in.

As was discussed earlier, changing the relative thread priorities within a process does not

usually make sense, and no tool allows this because only developers understand the impor-

tance of the various threads in their programs.

432 Windows Internals, Fifth Edition

On the other hand, because applications must manually register with MMCSS and provide

it with information about what kind of thread this is, MMCSS does have the necessary data

to change these relative thread priorities (and developers are well aware that this will be

happening).

EXPERIMENT: “Listening” to MMCSS Priority Boosting

We are now going to perform the same experiment as the prior one but without dis-

abling the MMCSS service. In addition, we’ll take a look at the Performance tool to

check the priority of the Windows Media Player threads.

 1. Run Windows Media Player (other playback programs may not yet take advan-

tage of the API calls required to register with MMCSS) and begin playing some

audio content.

 2. If you have a multiprocessor machine, be sure to set the affinity of the

Wmplayer.exe process so that it only runs on one CPU (since we’ll be using only

one CPUSTRES worker thread).

 3. Start the Performance tool by selecting Programs from the Start menu and then

selecting Reliability And Performance Monitor from the Administrative Tools

menu. Click on the Performance Monitor entry under Monitoring Tools.

 4. Click the Add Counter toolbar button (or press Ctrl+I) to bring up the Add

Counters dialog box.

 5. Select the Thread object, and then select the % Processor Time counter.

 6. In the Instances box, select <All instances>, and then click Search. Scroll down

until you see Wmplayer, and then select all its threads. Click the Add button, and

then click OK.

 7. As in the previous experiment, select Properties from the Action menu. Change

the Vertical Scale Maximum to 31, set the interval to Sample Every N Seconds in

the Graph Elements area, and click OK.

You should see one or more priority 21 threads inside Wmplayer, which will be

constantly running unless there is a higher-priority thread requiring the CPU after

they are dropped to the Exhausted category.

 8. Run Cpustres, and set the activity level of Thread 1 to Maximum.

 9. Raise the priority of Thread 1 from Normal to Time Critical.

 10. You should notice the system slowing down considerably, but the music playback

will continue. Every so often, you’ll be able to get back some responsiveness from

the rest of the system. Use this time to stop Cpustres.

 Chapter 5 Processes, Threads, and Jobs 433

 11. If the Performance tool was unable to capture data during the time Cpustres ran,

run it again, but use Highest instead of Time Critical. This change will slow down

the system less, but it still requires boosting from MMCSS, and, because once the

multimedia thread is put in the Exhausted category, there will always be a higher

priority thread requesting the CPU (CPUSTRES), you should notice Wmplayer’s

priority 21 thread drop every so often, as shown here.

MMCSS’s functionality does not stop at simple priority boosting, however. Because of the

nature of network drivers on Windows and the NDIS stack, DPCs are quite common mecha-

nisms for delaying work after an interrupt has been received from the network card. Because

DPCs run at an IRQL level higher than user-mode code (see Chapter 3 for more information

on DPCs and IRQLs), long-running network card driver code could still interrupt media play-

back during network transfers, or when playing a game for example.

Therefore, MMCSS also sends a special command to the network stack, telling it to throttle

network packets during the duration of the media playback. This throttling is designed to

maximize playback performance, at the cost of some small loss in network throughput (which

would not be noticeable for network operations usually performed during playback, such as

playing an online game). The exact mechanisms behind it do not belong to any area of the

scheduler, so we will leave them out of this description.

434 Windows Internals, Fifth Edition

Note The original implementation of the network throttling code had some design issues caus-

ing significant network throughput loss on machines with 1000 Mbit network adapters, especially

if multiple adapters were present on the system (a common feature of midrange motherboards).

This issue was analyzed by the MMCSS and networking teams at Microsoft and later fixed.

Multiprocessor Systems

On a uniprocessor system, scheduling is relatively simple: the highest-priority thread that

wants to run is always running. On a multiprocessor system, it is more complex, as Windows

attempts to schedule threads on the most optimal processor for the thread, taking into

account the thread’s preferred and previous processors, as well as the configuration of the

multiprocessor system. Therefore, while Windows attempts to schedule the highest-priority

runnable threads on all available CPUs, it only guarantees to be running the (single) highest-

priority thread somewhere.

Before we describe the specific algorithms used to choose which threads run where and

when, let’s examine the additional information Windows maintains to track thread and pro-

cessor state on multiprocessor systems and the two different types of multiprocessor systems

supported by Windows (hyperthreaded, multicore, and NUMA).

Multiprocessor Considerations in the Dispatcher Database

In addition to the ready queues and the ready summary, Windows maintains two bit-

masks that track the state of the processors on the system. (How these bitmasks are used

is explained in the upcoming section “Multiprocessor Thread-Scheduling Algorithms”.)

Following are the two bitmasks that Windows maintains:

The active processor mask (KeActiveProcessors), which has a bit set for each usable pro-

cessor on the system (This might be less than the number of actual processors if the

licensing limits of the version of Windows running supports less than the number of

available physical processors.)

The idle summary (KiIdleSummary), in which each set bit represents an idle processor

Whereas on uniprocessor systems, the dispatcher database is locked by raising IRQL to both

DPC/dispatch level and Synch level, on multiprocessor systems more is required, because

each processor could, at the same time, raise IRQL and attempt to operate on the dispatcher

database. (This is true for any systemwide structure accessed from high IRQL.) (See Chapter 3

for a general description of kernel synchronization and spinlocks.)

Because on a multiprocessor system one processor might need to modify another proces-

sor’s per-CPU scheduling data structures (such as inserting a thread that would like to run

on a certain processor), these structures are synchronized by using a new per-PRCB queued

 Chapter 5 Processes, Threads, and Jobs 435

spinlock, which is held at IRQL SYNCH_LEVEL. (See Table 5-20 for the various values of

SYNCH_LEVEL.) Thus, thread selection can occur while locking only an individual processor’s

PRCB, in contrast to doing this on Windows XP, where the systemwide dispatcher spinlock

had to be held.

TABLE 5-20 IRQL SYNCH_LEVEL on Multiprocessor Systems

CPU Type IRQL

Systems running on x86 27

Systems running on x64 12

Systems running on IA64 12

There is also a per-CPU list of threads in the deferred ready state. These represent threads

that are ready to run but have not yet been readied for execution; the actual ready opera-

tion has been deferred to a more appropriate time. Because each processor manipulates only

its own per-processor deferred ready list, this list is not synchronized by the PRCB spinlock.

The deferred ready thread list is processed before exiting the thread dispatcher, before per-

forming a context switch, and after processing a DPC. Threads on the deferred ready list are

either dispatched immediately or are moved to the per-processor ready queue for their pri-

ority level.

Note that the systemwide dispatcher spinlock still exists and is used, but it is held only for

the time needed to modify systemwide state that might affect which thread runs next. For

example, changes to synchronization objects (mutexes, events, and semaphores) and their

wait queues require holding the dispatcher lock to prevent more than one processor from

changing the state of such objects (and the consequential action of possibly readying threads

for execution). Other examples include changing the priority of a thread, timer expiration,

and swapping of thread kernel stacks.

Thread context switching is also synchronized by using a finer-grained per-thread spinlock,

whereas in Windows XP context switching was synchronized by holding a systemwide con-

text swap spinlock.

Hyperthreaded and Multicore Systems

As described in the “Symmetric Multiprocessing” section in Chapter 2, Windows supports

hyperthreaded and multicore multiprocessor systems in two primary ways:

 1. Logical processors as well as per-package cores do not count against physical processor

licensing limits. For example, Windows Vista Home Basic, which has a licensed proces-

sor limit of 1, will use all four cores on a single processor system.

 2. When choosing a processor for a thread, if there is a physical processor with all logi-

cal processors idle, a logical processor from that physical processor will be selected, as

opposed to choosing an idle logical processor on a physical processor that has another

logical processor running a thread.

436 Windows Internals, Fifth Edition

EXPERIMENT: Viewing Hyperthreading Information

You can examine the information Windows maintains for hyperthreaded processors

using the !smt command in the kernel debugger. The following output is from a dual-

processor hyperthreaded Xeon system (four logical processors):

lkd> !smt

SMT Summary:

 KeActiveProcessors: ****---------------------------- (0000000f)

 KiIdleSummary: -***---------------------------- (0000000e)

No PRCB Set Master SMT Set #LP IAID

 0 ffdff120 Master *-*----------------------------- (00000005) 2 00

 1 f771f120 Master -*-*---------------------------- (0000000a) 2 06

 2 f7727120 ffdff120 *-*----------------------------- (00000005) 2 01

 3 f772f120 f771f120 -*-*---------------------------- (0000000a) 2 07

 Number of licensed physical processors: 2

Logical processors 0 and 1 are on separate physical processors (as indicated by the

term “Master”).

NUMA Systems

Another type of multiprocessor system supported by Windows is one with a nonuniform

memory access (NUMA) architecture. In a NUMA system, processors are grouped together in

smaller units called nodes. Each node has its own processors and memory and is connected

to the larger system through a cache-coherent interconnect bus. These systems are called

“nonuniform” because each node has its own local high-speed memory. While any processor

in any node can access all of memory, node-local memory is much faster to access.

The kernel maintains information about each node in a NUMA system in a data structure

called KNODE. The kernel variable KeNodeBlock is an array of pointers to the KNODE struc-

tures for each node. The format of the KNODE structure can be shown using the dt com-

mand in the kernel debugger, as shown here:

lkd> dt nt!_knode

nt!_KNODE

 +0x000 PagedPoolSListHead : _SLIST_HEADER

 +0x008 NonPagedPoolSListHead : [3] _SLIST_HEADER

 +0x020 PfnDereferenceSListHead : _SLIST_HEADER

 +0x028 ProcessorMask : Uint4B

 +0x02c Color : UChar

 +0x02d Seed : UChar

 +0x02e NodeNumber : UChar

 +0x02f Flags : _flags

 +0x030 MmShiftedColor : Uint4B

 +0x034 FreeCount : [2] Uint4B

 +0x03c PfnDeferredList : Ptr32 _SINGLE_LIST_ENTRY

 +0x040 CachedKernelStacks : _CACHED_KSTACK_LIST

 Chapter 5 Processes, Threads, and Jobs 437

EXPERIMENT: Viewing NUMA Information

You can examine the information Windows maintains for each node in a NUMA system

using the !numa command in the kernel debugger. The following partial output is from

a 32-processor NUMA system by NEC with 4 processors per node:

21: kd> !numa

NUMA Summary:

Number of NUMA nodes : 8

Number of Processors : 32

MmAvailablePages : 0x00F70D2C

KeActiveProcessors : ********************************--------------------------------

 (00000000ffffffff)

NODE 0 (E00000008428AE00):

 ProcessorMask : ****--

 Color : 0x00000000

 MmShiftedColor : 0x00000000

 Seed : 0x00000000

 Zeroed Page Count: 0x00000000001CF330

 Free Page Count : 0x0000000000000000

NODE 1 (E00001597A9A2200):

 ProcessorMask : ----****--

 Color : 0x00000001

 MmShiftedColor : 0x00000040

 Seed : 0x00000006

 Zeroed Page Count: 0x00000000001F77A0

 Free Page Count : 0x0000000000000004

The following partial output is from a 64-processor NUMA system from Hewlett-

Packard with 4 processors per node:

26: kd> !numa

NUMA Summary:

Number of NUMA nodes : 16

Number of Processors : 64

MmAvailablePages : 0x03F55E67

KeActiveProcessors : **

 (ffffffffffffffff)

NODE 0 (E000000084261900):

 ProcessorMask : ****--

 Color : 0x00000000

 MmShiftedColor : 0x00000000

 Seed : 0x00000001

 Zeroed Page Count: 0x00000000003F4430

 Free Page Count : 0x0000000000000000

438 Windows Internals, Fifth Edition

NODE 1 (E0000145FF992200):

 ProcessorMask : ----****--

 Color : 0x00000001

 MmShiftedColor : 0x00000040

 Seed : 0x00000007

 Zeroed Page Count: 0x00000000003ED59A

 Free Page Count : 0x0000000000000000

Applications that want to gain the most performance out of NUMA systems can set the affin-

ity mask to restrict a process to the processors in a specific node. This information can be

obtained using the functions listed in Table 5-21. Functions that can alter thread affinity are

listed in Table 5-13.

TABLE 5-21 NUMA-Related Functions

Function Description

GetNumaHighestNodeNumber Retrieves the node that currently has the highest number.

GetNumaNodeProcessorMask Retrieves the processor mask for the specified node.

GetNumaProximityNode Returns the NUMA node number for the given proximity ID.

GetNumaProcessorNode Retrieves the node number for the specified processor.

How the scheduling algorithms take into account NUMA systems will be covered in the

upcoming section “Multiprocessor Thread-Scheduling Algorithms” (and the optimizations in

the memory manager to take advantage of node-local memory are covered in Chapter 9).

Affinity

Each thread has an affinity mask that specifies the processors on which the thread is allowed

to run. The thread affinity mask is inherited from the process affinity mask. By default, all

processes (and therefore all threads) begin with an affinity mask that is equal to the set of

active processors on the system—in other words, the system is free to schedule all threads

on any available processor.

However, to optimize throughput and/or partition workloads to a specific set of processors,

applications can choose to change the affinity mask for a thread. This can be done at several

levels:

Calling the SetThreadAffinityMask function to set the affinity for an individual thread

Calling the SetProcessAffinityMask function to set the affinity for all the threads in a

process. Task Manager and Process Explorer provide a GUI to this function if you right-

click a process and choose Set Affinity. The Psexec tool (from Sysinternals) provides a

command-line interface to this function. (See the –a switch.)

 Chapter 5 Processes, Threads, and Jobs 439

By making a process a member of a job that has a jobwide affinity mask set using the

SetInformationJobObject function (Jobs are described in the upcoming “Job Objects”

section.)

By specifying an affinity mask in the image header when compiling the application

(For more information on the detailed format of Windows images, search for “Portable

Executable and Common Object File Format Specification” on www.microsoft.com.)

You can also set the “uniprocessor” flag for an image (at compile time). If this flag is set,

the system chooses a single processor at process creation time and assigns that as the pro-

cess affinity mask, starting with the first processor and then going round-robin across all

the processors. For example, on a dual-processor system, the first time you run an image

marked as uniprocessor, it is assigned to CPU 0; the second time, CPU 1; the third time, CPU

0; the fourth time, CPU 1; and so on. This flag can be useful as a temporary workaround for

programs that have multithreaded synchronization bugs that, as a result of race conditions,

surface on multiprocessor systems but that don’t occur on uniprocessor systems. (This has

actually saved the authors of this book on two different occasions.)

EXPERIMENT: Viewing and Changing Process Affinity

In this experiment, you will modify the affinity settings for a process and see that pro-

cess affinity is inherited by new processes:

 1. Run the command prompt (Cmd.exe).

 2. Run Task Manager or Process Explorer, and find the Cmd.exe process in the pro-

cess list.

 3. Right-click the process, and select Affinity. A list of processors should be dis-

played. For example, on a dual-processor system you will see this:

 4. Select a subset of the available processors on the system, and click OK. The pro-

cess’s threads are now restricted to run on the processors you just selected.

 5. Now run Notepad.exe from the command prompt (by typing Notepad.exe).

 6. Go back to Task Manager or Process Explorer and find the new Notepad process.

Right-click it, and choose Affinity. You should see the same list of processors you

chose for the command prompt process. This is because processes inherit their

affinity settings from their parent.

440 Windows Internals, Fifth Edition

Windows won’t move a running thread that could run on a different processor from one CPU

to a second processor to permit a thread with an affinity for the first processor to run on

the first processor. For example, consider this scenario: CPU 0 is running a priority 8 thread

that can run on any processor, and CPU 1 is running a priority 4 thread that can run on any

processor. A priority 6 thread that can run on only CPU 0 becomes ready. What happens?

Windows won’t move the priority 8 thread from CPU 0 to CPU 1 (preempting the priority 4

thread) so that the priority 6 thread can run; the priority 6 thread has to wait.

Therefore, changing the affinity mask for a process or a thread can result in threads getting

less CPU time than they normally would, as Windows is restricted from running the thread

on certain processors. Therefore, setting affinity should be done with extreme care—in most

cases, it is optimal to let Windows decide which threads run where.

Ideal and Last Processor

Each thread has two CPU numbers stored in the kernel thread block:

Ideal processor, or the preferred processor that this thread should run on

Last processor, or the processor on which the thread last ran

The ideal processor for a thread is chosen when a thread is created using a seed in the pro-

cess block. The seed is incremented each time a thread is created so that the ideal processor

for each new thread in the process will rotate through the available processors on the system.

For example, the first thread in the first process on the system is assigned an ideal processor

of 0. The second thread in that process is assigned an ideal processor of 1. However, the next

process in the system has its first thread’s ideal processor set to 1, the second to 2, and so on.

In that way, the threads within each process are spread evenly across the processors.

Note that this assumes the threads within a process are doing an equal amount of work. This

is typically not the case in a multithreaded process, which normally has one or more house-

keeping threads and then a number of worker threads. Therefore, a multithreaded applica-

tion that wants to take full advantage of the platform might find it advantageous to specify

the ideal processor numbers for its threads by using the SetThreadIdealProcessor function.

On hyperthreaded systems, the next ideal processor is the first logical processor on the next

physical processor. For example, on a dual-processor hyperthreaded system with four logi-

cal processors, if the ideal processor for the first thread is assigned to logical processor 0, the

second thread would be assigned to logical processor 2, the third thread to logical proces-

sor 1, the fourth thread to logical process 3, and so forth. In this way, the threads are spread

evenly across the physical processors.

On NUMA systems, when a process is created, an ideal node for the process is selected. The

first process is assigned to node 0, the second process to node 1, and so on. Then, the ideal

processors for the threads in the process are chosen from the process’s ideal node. The ideal

 Chapter 5 Processes, Threads, and Jobs 441

processor for the first thread in a process is assigned to the first processor in the node. As

additional threads are created in processes with the same ideal node, the next processor is

used for the next thread’s ideal processor, and so on.

Dynamic Processor Addition and Replacement

As we’ve seen, developers can fine-tune which threads are allowed to (and in the case of

the ideal processor, should) run on which processor. This works fine on systems that have a

constant number of processors during their run time (for example, desktop machines require

shutting down the computer to make any sort of hardware changes to the processor or their

count).

Today’s server systems, however, cannot afford the downtime that CPU replacement or addi-

tion normally requires. In fact, one of the times when adding a CPU is required for a server

is at times of high load that is above what the machine can support at its current level of

performance. Having to shut down the server during a period of peak usage would defeat

the purpose. To meet this requirement, the latest generation of server motherboards and

systems support the addition of processors (as well as their replacement) while the machine

is still running. The ACPI BIOS and related hardware on the machine have been specifically

built to allow and be aware of this need, but operating system participation is required for

full support.

Dynamic processor support is provided through the HAL, which will notify the kernel of a

new processor on the system through the function KeStartDynamicProcessor. This routine

does similar work to that performed when the system detects more than one processor at

startup and needs to initialize the structures related to them. When a dynamic processor

is added, a variety of system components perform some additional work. For example, the

memory manager allocates new pages and memory structures optimized for the CPU. It

also initializes a new DPC kernel stack while the kernel initializes the Global Descriptor Table

(GDT), the Interrupt Descriptor Table (IDT), the processor control region (PCR), the processor

control block (PRCB), and other related structures for the processor.

Other executive parts of the kernel are also called, mostly to initialize the per-processor

lookaside lists for the processor that was added. For example, the I/O manager, the executive

lookaside list code, the cache manager, and the object manager all use per-processor look-

aside lists for their frequently allocated structures.

Finally, the kernel initializes threaded DPC support for the processor and adjusts exported

kernel variables to report the new processor. Different memory manager masks and pro-

cess seeds based on processor counts are also updated, and processor features need to be

updated for the new processor to match the rest of the system (for example, enabling virtu-

alization support on the newly added processor). The initialization sequence completes with

the notification to the Windows Hardware Error Architecture (WHEA) component that a new

processor is online.

442 Windows Internals, Fifth Edition

The HAL is also involved in this process. It is called once to start the dynamic processor after

the kernel is aware of it, and it is called again after the kernel has finished initialization of

the processor. However, these notifications and callbacks only make the kernel aware and

respond to processor changes. Although an additional processor increases the throughput of

the kernel, it does nothing to help drivers.

To handle drivers, the system has a new default executive callback, the processor add call-

back, that drivers can register with for notifications. Similar to the callbacks that notify drivers

of power state or system time changes, this callback allows driver code to, for example, cre-

ate a new worker thread if desirable so that it can handle more work at the same time.

Once drivers are notified, the final kernel component called is the Plug and Play manager,

which adds the processor to the system’s device node and rebalances interrupts so that

the new processor can handle interrupts that were already registered for other processors.

Unfortunately, until now, CPU-hungry applications have still been left out of this process, but

Windows Server 2008 and Windows Vista Service Pack 1 have improved the process to allow

applications to be able to take advantage of newer processors as well.

However, a sudden change of affinity can have potentially breaking changes for a running

application (especially when going from a single-processor to a multiprocessor environment)

through the appearance of potential race conditions or simply misdistribution of work (since

the process might have calculated the perfect ratios at startup, based on the number of CPUs

it was aware of). As a result, applications do not take advantage of a dynamically added pro-

cessor by default—they must request it.

The Windows APIs SetProcessAffinityUpdateMode and QueryProcessAffinityMode (which use

the undocumented NtSet/QueryInformationProcess system call) tell the process manager that

these applications should have their affinity updated (by setting the AffinityUpdateEnable

flag in EPROCESS), or that they do not want to deal with affinity updates (by setting the

AffinityPermanent flag in EPROCESS). Once an application has told the system that its affinity

is permanent, it cannot later change its mind and request affinity updates, so this is a one-

time change.

As part of KeStartDynamicProcessor, a new step has been added after interrupts are

rebalanced, which is to call the process manager to perform affinity updates through

PsUpdateActiveProcessAffinity. Some Windows core processes and services already have

affinity updates enabled, while third-party software will need to be recompiled to take

advantage of the new API call. The System process, Svchost processes, and Smss are all com-

patible with dynamic processor addition.

Multiprocessor Thread-Scheduling Algorithms

Now that we’ve described the types of multiprocessor systems supported by Windows as

well as the thread affinity and ideal processor settings, we’re ready to examine how this

 Chapter 5 Processes, Threads, and Jobs 443

information is used to determine which threads run where. There are two basic decisions to

describe:

Choosing a processor for a thread that wants to run

Choosing a thread on a processor that needs something to do

Choosing a Processor for a Thread When There Are Idle Processors

When a thread becomes ready to run, Windows first tries to schedule the thread to run on an

idle processor. If there is a choice of idle processors, preference is given first to the thread’s

ideal processor, then to the thread’s previous processor, and then to the currently executing

processor (that is, the CPU on which the scheduling code is running).

To select the best idle processor, Windows starts with the set of idle processors that the

thread’s affinity mask permits it to run on. If the system is NUMA and there are idle CPUs in

the node containing the thread’s ideal processor, the list of idle processors is reduced to that

set. If this eliminates all idle processors, the reduction is not done. Next, if the system is run-

ning hyperthreaded processors and there is a physical processor with all logical processors

idle, the list of idle processors is reduced to that set. If that results in an empty set of proces-

sors, the reduction is not done.

If the current processor (the processor trying to determine what to do with the thread that

wants to run) is in the remaining idle processor set, the thread is scheduled on it. If the cur-

rent processor is not in the remaining set of idle processors, it is a hyperthreaded system,

and there is an idle logical processor on the physical processor containing the ideal processor

for the thread, the idle processors are reduced to that set. If not, the system checks whether

there are any idle logical processors on the physical processor containing the thread’s previ-

ous processor. If that set is nonzero, the idle processors are reduced to that list. Finally, the

lowest numbered CPU in the remaining set is selected as the processor to run the thread on.

Once a processor has been selected for the thread to run on, that thread is put in the

standby state and the idle processor’s PRCB is updated to point to this thread. When the idle

loop on that processor runs, it will see that a thread has been selected to run and will dis-

patch that thread.

Choosing a Processor for a Thread When There Are No Idle Processors

If there are no idle processors when a thread wants to run, Windows compares the priority of

the thread running (or the one in the standby state) on the thread’s ideal processor to deter-

mine whether it should preempt that thread.

If the thread’s ideal processor already has a thread selected to run next (waiting in the

standby state to be scheduled) and that thread’s priority is less than the priority of the thread

being readied for execution, the new thread preempts that first thread out of the standby

444 Windows Internals, Fifth Edition

state and becomes the next thread for that CPU. If there is already a thread running on that

CPU, Windows checks whether the priority of the currently running thread is less than the

thread being readied for execution. If so, the currently running thread is marked to be pre-

empted and Windows queues an interprocessor interrupt to the target processor to preempt

the currently running thread in favor of this new thread.

Note Windows doesn’t look at the priority of the current and next threads on all the CPUs—just

on the one CPU selected as just described. If no thread can be preempted on that one CPU, the

new thread is put in the ready queue for its priority level, where it awaits its turn to get sched-

uled. Therefore, Windows does not guarantee to be running all the highest-priority threads, but

it will always run the highest-priority thread.

If the ready thread cannot be run right away, it is moved into the ready state where it awaits

its turn to run. Note that threads are always put on their ideal processor’s per-processor

ready queues.

Selecting a Thread to Run on a Specific CPU

Because each processor has its own list of threads waiting to run on that processor, when a

thread finishes running, the processor can simply check its per-processor ready queue for the

next thread to run. If the per-processor ready queues are empty, the idle thread for that pro-

cessor is scheduled. The idle thread then begins scanning other processor’s ready queues for

threads it can run. Note that on NUMA systems, the idle thread first looks at processors on

its node before looking at other nodes’ processors.

CPU Rate Limits

As part of the new hard quota management system added in Windows Vista (which builds on

previous quota support present since the first version of Windows NT, but adds hard limits

instead of soft hints), support for limiting CPU usage was added to the system in three differ-

ent ways: per-session, per-user, or per-system. Unfortunately, information on enabling these

new limits has not yet been documented, and no tool that is part of the operating system

allows you to set these limits: you must modify the registry settings manually. Because all the

quotas—save one—are memory quotas, we will cover those in Chapter 9, which deals with

the memory manager, and focus our attention on the CPU rate limit.

The new quota system can be accessed through the registry key HKLM\SYSTEM\Current-

ControlSet\Control\Session Manager\QuotaSystem, as well as through the standard NtSet-
InformationProcess system call. CPU rate limits can therefore be set in one of three ways:

By creating a new value called CpuRateLimit and entering the rate information.

 Chapter 5 Processes, Threads, and Jobs 445

By creating a new key with the security ID (SID) of the account you want to limit, and

creating a CpuRateLimit value inside that key.

By calling NtSetInformationProcess and giving it the process handle of the process to

limit and the CPU rate limiting information.

In all three cases, the CPU rate limit data is not a straightforward value; it is based on a com-

pressed bitfield, documented in the WDK as part of the RATE_QUOTA_LIMIT structure. The

bottom four bits define the rate phase, which can be expressed either as one, two, or three

seconds—this value defines how often the rate limiting should be applied and is called the

PS_RATE_PHASE. The rest of the bits are used for the actual rate, as a value representing a

percentage of maximum CPU usage. Because any number from 0 to 100 can be represented

with only 7 bits, the rest of the bits are unused. Therefore, a rate limit of 40 percent every 2

seconds would be defined by the value 0x282, or 101000 0010 in binary.

The process manager, which is responsible for enforcing the CPU rate limit, uses a variety of

system mechanisms to do its job. First of all, rate limiting is able to reliably work because of

the CPU cycle count improvements discussed earlier, which allow the process manager to

accurately determine how much CPU time a process has taken and know whether the limit

should be enforced. It then uses a combination of DPC and APC routines to throttle down

DPC and APC CPU usage, which are outside the direct control of user-mode developers but

still result in CPU usage in the system (in the case of a systemwide CPU rate limit).

Finally, the main mechanism through which rate limiting works is by creating an artificial wait

on a kernel gate object (making the thread uniquely bound to this object and putting it in a

wait state, which does not consume CPU cycles). This mechanism operates through the nor-

mal routine of an APC object queued to the thread or threads inside the process currently

responsible for the work. The gate is signaled by an internal worker thread inside the process

manager responsible for replenishment of the CPU usage, which is queued by a DPC respon-

sible for replenishing systemwide CPU usage requests.

Job Objects

A job object is a nameable, securable, shareable kernel object that allows control of one or

more processes as a group. A job object’s basic function is to allow groups of processes to be

managed and manipulated as a unit. A process can be a member of only one job object. By

default, its association with the job object can’t be broken and all processes created by the

process and its descendents are associated with the same job object as well. The job object

also records basic accounting information for all processes associated with the job and for

all processes that were associated with the job but have since terminated. Table 5-22 lists the

Windows functions to create and manipulate job objects.

446 Windows Internals, Fifth Edition

TABLE 5-22 Windows API Functions for Jobs

Function Description

CreateJobObject Creates a job object (with an optional name)

OpenJobObject Opens an existing job object by name

AssignProcessToJobObject Adds a process to a job

TerminateJobObject Terminates all processes in a job

SetInformationJobObject Sets limits

QueryInformationJobObject Retrieves information about the job, such as CPU time, page fault

count, number of processes, list of process IDs, quotas or limits, and

security limits

The following are some of the CPU-related and memory-related limits you can specify for

a job:

Maximum number of active processes Limits the number of concurrently existing

processes in the job.

Jobwide user-mode CPU time limit Limits the maximum amount of user-mode CPU

time that the processes in the job can consume (including processes that have run

and exited). Once this limit is reached, by default all the processes in the job will be

terminated with an error code and no new processes can be created in the job (unless

the limit is reset). The job object is signaled, so any threads waiting for the job will be

released. You can change this default behavior with a call to EndOfJobTimeAction.

Per-process user-mode CPU time limit Allows each process in the job to accumulate

only a fixed maximum amount of user-mode CPU time. When the maximum is reached,

the process terminates (with no chance to clean up).

Job scheduling class Sets the length of the time slice (or quantum) for threads in

processes in the job. This setting applies only to systems running with long, fixed quan-

tums (the default for Windows Server systems). The value of the job-scheduling class

determines the quantum as shown here:

Scheduling Class Quantum Units

0 6

1 12

2 18

3 24

4 30

5 36

6 42

7 48

8 54

9 Infinite if real-time; 60 otherwise

 Chapter 5 Processes, Threads, and Jobs 447

Job processor affinity Sets the processor affinity mask for each process in the job.

(Individual threads can alter their affinity to any subset of the job affinity, but processes

can’t alter their process affinity setting.)

Job process priority class Sets the priority class for each process in the job. Threads

can’t increase their priority relative to the class (as they normally can). Attempts to

increase thread priority are ignored. (No error is returned on calls to SetThreadPriority,

but the increase doesn’t occur.)

Default working set minimum and maximum Defines the specified working set

minimum and maximum for each process in the job. (This setting isn’t jobwide—each

process has its own working set with the same minimum and maximum values.)

Process and job committed virtual memory limit Defines the maximum amount of

virtual address space that can be committed by either a single process or the entire job.

Jobs can also be set to queue an entry to an I/O completion port object, which other threads

might be waiting for, with the Windows GetQueuedCompletionStatus function.

You can also place security limits on processes in a job. You can set a job so that each process

runs under the same jobwide access token. You can then create a job to restrict processes

from impersonating or creating processes that have access tokens that contain the local

administrator’s group. In addition, you can apply security filters so that when threads in pro-

cesses contained in a job impersonate client threads, certain privileges and security IDs (SIDs)

can be eliminated from the impersonation token.

Finally, you can also place user-interface limits on processes in a job. Such limits include

being able to restrict processes from opening handles to windows owned by threads outside

the job, reading and/or writing to the clipboard, and changing the many user-interface sys-

tem parameters via the Windows SystemParametersInfo function.

EXPERIMENT: Viewing the Job Object

You can view named job objects with the Performance tool. (See the Job Object and

Job Object Details performance objects.) You can view unnamed jobs with the kernel

debugger !job or dt nt!_ejob commands.

To see whether a process is associated with a job, you can use the kernel debugger

!process command or Process Explorer. Follow these steps to create and view an

unnamed job object:

 1. From the command prompt, use the runas command to create a process running

the command prompt (Cmd.exe). For example, type runas /user:<domain>\

< username> cmd. You’ll be prompted for your password. Enter your password,

and a Command Prompt window will appear. The Windows service that executes

runas commands creates an unnamed job to contain all processes (so that it can

terminate these processes at logoff time).

448 Windows Internals, Fifth Edition

 2. From the command prompt, run Notepad.exe.

 3. Then run Process Explorer and notice that the Cmd.exe and Notepad.exe pro-

cesses are highlighted as part of a job. (You can configure the colors used to

highlight processes that are members of a job by clicking Options, Configure

Highlighting.) Here is a screen shot showing these two processes:

 4. Double-click either the Cmd.exe or Notepad.exe process to bring up the process

properties. You will see a Job tab in the process properties dialog box.

 5. Click the Job tab to view the details about the job. In this case, there are no quo-

tas associated with the job, but there are two member processes:

 Chapter 5 Processes, Threads, and Jobs 449

 6. Now run the kernel debugger on the live system, display the process list with

!process, and find the recently created process running Cmd.exe. Then display the

process block by using !process <process ID>, find the address of the job object,

and finally display the job object with the !job command. Here’s some partial

debugger output of these commands on a live system:

lkd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

 .

 .

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

 Image: Cmd.exe

PROCESS 856561a0 SessionId: 0 Cid: 0d70 Peb: 7ffdf000 ParentCid: 0fc4

 DirBase: 2e341000 ObjectTable: e19437c8 HandleCount: 16.

 Image: Notepad.exe

lkd> !process 0fc4

Searching for Process with Cid == fc4

PROCESS 8567b758 SessionId: 0 Cid: 0fc4 Peb: 7ffdf000 ParentCid: 00b0

 DirBase: 1b3fb000 ObjectTable: e18dd7d0 HandleCount: 19.

 Image: Cmd.exe

 BasePriority 8

 .

 .

 Job 85557988

lkd> !job 85557988

Job at 85557988

 TotalPageFaultCount 0

 TotalProcesses 2

 ActiveProcesses 2

 TotalTerminatedProcesses 0

 LimitFlags 0

 MinimumWorkingSetSize 0

 MaximumWorkingSetSize 0

 ActiveProcessLimit 0

 PriorityClass 0

 UIRestrictionsClass 0

 SecurityLimitFlags 0

 Token 00000000

 7. Finally, use the dt command to display the job object and notice the additional

fields shown about the job:

lkd> dt nt!_ejob 85557988

nt!_EJOB

 +0x000 Event : _KEVENT

 +0x010 JobLinks : _LIST_ENTRY [0x81d09478 - 0x87f55030]

 +0x018 ProcessListHead : _LIST_ENTRY [0x87a08dd4 - 0x8679284c]

 +0x020 JobLock : _ERESOURCE

 +0x058 TotalUserTime : _LARGE_INTEGER 0x0

450 Windows Internals, Fifth Edition

 +0x060 TotalKernelTime : _LARGE_INTEGER 0x0

 +0x068 ThisPeriodTotalUserTime : _LARGE_INTEGER 0x0

 +0x070 ThisPeriodTotalKernelTime : _LARGE_INTEGER 0x0

 +0x078 TotalPageFaultCount : 0

 +0x07c TotalProcesses : 2

 +0x080 ActiveProcesses : 2

 +0x084 TotalTerminatedProcesses : 0

 +0x088 PerProcessUserTimeLimit : _LARGE_INTEGER 0x0

 +0x090 PerJobUserTimeLimit : _LARGE_INTEGER 0x0

 +0x098 LimitFlags : 0

 +0x09c MinimumWorkingSetSize : 0

 +0x0a0 MaximumWorkingSetSize : 0

 +0x0a4 ActiveProcessLimit : 0

 +0x0a8 Affinity : 0

 +0x0ac PriorityClass : 0 ''

 +0x0b0 AccessState : (null)

 +0x0b4 UIRestrictionsClass : 0

 +0x0b8 EndOfJobTimeAction : 0

 +0x0bc CompletionPort : 0x87e3d2e8

 +0x0c0 CompletionKey : 0x07a89508

 +0x0c4 SessionId : 1

 +0x0c8 SchedulingClass : 5

 +0x0d0 ReadOperationCount : 0

 +0x0d8 WriteOperationCount : 0

 +0x0e0 OtherOperationCount : 0

 +0x0e8 ReadTransferCount : 0

 +0x0f0 WriteTransferCount : 0

 +0x0f8 OtherTransferCount : 0

 +0x100 ProcessMemoryLimit : 0

 +0x104 JobMemoryLimit : 0

 +0x108 PeakProcessMemoryUsed : 0x19e

 +0x10c PeakJobMemoryUsed : 0x2ed

 +0x110 CurrentJobMemoryUsed : 0x2ed

 +0x114 MemoryLimitsLock : _EX_PUSH_LOCK

 +0x118 JobSetLinks : _LIST_ENTRY [0x8575cff0 - 0x8575cff0]

 +0x120 MemberLevel : 0

 +0x124 JobFlags : 0

Conclusion

In this chapter, we’ve examined the structure of processes and threads and jobs, seen how

they are created, and looked at how Windows decides which threads should run and for

how long.

In the next chapter we’ll look at a part of the system that’s received more attention in the last

few years than ever before, Windows security.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

